iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/S11265-014-0951-7
Comparative Study of Simplified MAP Algorithms and an Implementation of Non-Parallel-Radix-2 Turbo Decoder | Journal of Signal Processing Systems Skip to main content

Advertisement

Log in

Comparative Study of Simplified MAP Algorithms and an Implementation of Non-Parallel-Radix-2 Turbo Decoder

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

This paper presents hardware and bit-error-rate (BER) performance analysis of simplified maximum-a-posteriori (MAP) algorithms based on piece-wise-linear-approximations and Maclaurin-series-expansion for the turbo codes. From this comparative study, a simplified MAP algorithm with optimal BER performance is selected and an architecture suitable for high speed application is suggested for the design of soft-input-soft-output (SISO) unit. Subsequently, a quantitative model is proposed for estimating the amount of memory required by SISO unit in terms of sliding window size, data width of internal metrics and total number of systematic and parity bits. Thereafter, a non-parallel-radix-2 architecture of turbo decoder which incorporates SISO unit and quadratic-permutation-polynomial interleaver is presented. Application-specific-integrated-circuit (ASIC) implementation of this turbo decoder is carried out in 130 nm complementary-metal-oxide-semiconductor (CMOS) technology node and its power consumption, design area and operating clock frequency are reported. Finally, a comparison with similar contributions in the literature has shown that the implemented turbo decoder achieves energy efficiency of 0.28 nJ/b/iteraions. Similarly, it has achieved a highest throughput of 28 Mbps among radix-2 and radix-4 non-parallel turbo decoders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Digital-Video-Broadcasting (DVB) (2008). ETSI EN 302 583 V1.1.1; Framing Structure, Channel Coding and Modulation for Satellite Services to Handheld Devices (SH).

  2. Evolved Universal-Terrestrial-Radio-Access (E-UTRA) (2011). 3GPP Std., TS 36.212, version 10.0.0, Release 10; Multiplexing and channel coding.

  3. Benkeser, C., Burg, A., Cupaiuolo, T., Huang, Q. (2009). Design and Optimization of an HSDPA Turbo Decoder ASIC’. IEEE J Solid-State Circuits, 44, 98–106.

    Article  Google Scholar 

  4. Berrou, C., Glavieux, A., Thitimajshima, P. Near Shannon Limit Error-Correcting Coding and Decoding: Turbo-Codes’. Proc IEEE Int Conf Commun. May-1993.

  5. Talakoub, S., Sabeti, L., Shahrrava, B., Ahmadi, M. (2007). An improved max-log-map algorithm for turbo decoding and turbo equalization. IEEE Trans Instrum Meas, 56, 1058–1063.

    Article  Google Scholar 

  6. Gross, W.J., & Gulak, P.G. (1998). Simplified MAP algorithm suitable for implementation of turbo decoders. Electronics Letters, 34, 1577–1578.

    Article  Google Scholar 

  7. Classon, B., Blankenship, K., Desai, V., Channel coding for 4G systems with adaptive modulation and coding (2002). IEEE Wireless Communications, 9, 8–13.

    Article  Google Scholar 

  8. Mansour, M.M., & Shanbhag, N.R.A 640-Mb/s 2048-Bit programmable LDPC decoder chip. IEEE J Solid-State Circuits, 41, 684–698.

  9. Cheng, J., & Ottosson, T. (2000). Linearly approximated log-map algorithms for turbo decoding. Proc IEEE Veh Technol Conf (VTC), 3, 2252–2256.

    Google Scholar 

  10. Hu, X., Eleftheriou, E., Arnold, D., Dholakia, A. (2001). Efficient implementation of the sum-product algorithm for decoding LDPC codes. Proc Global Telecommunication Conf, 2, 1036–1036E.

    Google Scholar 

  11. Papaharalabos, S., Mathiopoulos, P.T., Masera, G., Martina, M. (2009). On optimal and near-optimal turbo decoding using generalized max* operator . IEEE Commun Lett, 13, 522–524.

    Article  Google Scholar 

  12. Sun, Y., Zhu, Y., Goel, M., Cavallaro, J.R. (2008). Configurable and scalable high throughput turbo decoder architecture for multiple 4g wireless standards. Proc int conf on application-specific syst, arch and processors, (pp. 209–214).

  13. Woodard, J. P., & Hanzo, L. Comparative study of turbo decoding techniques: an overview. IEEE Trans Veh Technol, 49, 2208–2233.

  14. Wang, H., Yang, H., Yang, D. (2006). Improved Log-MAP decoding algorthm for turbo-like codes. IEEE Commun Lett, 10(3), 186–188.

    Article  Google Scholar 

  15. Martina, M., Masera, G., Papaharalabos, S., Takis Mathiopoulos, P., Gioulekas, F. (2012). On practical implementation and generalizations of max* operator for turbo and LDPC decoders. IEEE Trans Instrum Meas, 61(4), 888–895.

    Article  Google Scholar 

  16. Vogt, J., & Finger, A. (2000). Improving the Max-Log-MAP turbo decoder. Electronics Letters, 36, 1937–1939.

    Article  Google Scholar 

  17. Wang, Z., Chi, Z., Parhi, K.K. (2002). Area-efficient high-speed decoding scheme for turbo decoders. IEEE Trans Very Large Scale Integr (VLSI) Syst, 10, 902–912.

    Article  Google Scholar 

  18. Wu, Y., Woerner, B.D., Blankenship, T.K. (2001). Data width requirements in SISO decoding with modulo normalization. IEEE Trans Commun, 49, 1861–1868.

    Article  Google Scholar 

  19. Weste, NHE author=Harris (2005). CMOS VLSI Design: A Circuits and Systems Perspective, 3rd Int. ed.’.Reading, MA: Pearson-Addison Welsley.

  20. Lee, S., Wang, C., Sheen, W. (2010). Architecture design of QPP interleaver for parallel turbo decoding. Proc IEEE Veh Technol Conf (VTC), 1–5.

  21. Martina, M., Nicola, M., Masera, G. (2008). A flexible UMT-WiMax turbo decoder architecture. IEEE Trans Circuits Syst II, Exp Briefs, 55, 369–373.

    Article  Google Scholar 

  22. Bickerstaff, M., Davis, L., Thomas, C., Garrett, D., Nicol, C. (2003). A 24Mb/s Radix-4 Log MAP turbo decoder for 3GPP-HSDPA mobile wireless. Proc IEEE Int Conf Solid-State Circuits (ISSCC), 1, 150–484.

    Article  Google Scholar 

  23. Bickerstaff, M.A., Garrett, D., Prokop, T., Thomas, C. (2002). A unified turbo/viterbi channel decoder for 3GPP mobile wireless in 0.18 um CMOS. IEEE J Solid-State Circuits, 37, 1555–1564.

    Article  Google Scholar 

  24. Myoung-Cheol, & Park, I. (2007). SIMD processor-based turbo decoder supporting multiple third-generation wireless standards. IEEE Trans Very Large Scale Integr (VLSI) Syst, 15, 801–810.

  25. Kim, J., & Park, I. (2009). A unified parallel radix-4 turbo decoder for mobile WiMAX and 3GPP-LTE. Proc IEEE Custom Integrated Circuits Conf (CICC), 487–490.

  26. Wang, Z., Tang, Y., Wang, Y. (2003). Low hardware complexity parallel turbo decoder architecture. Proc IEEE Int Sym Circuits and Systems (ISCAS), 2, 53–56.

    Google Scholar 

  27. May, M., Ilnseher, T., Wehn, N., Raab, W. (2010). A 150 Mbit/s 3GPP-LTE turbo code decoder. Design, Automation & Test in Europe Conf & Exhibition (DATE), 1420–1425.

  28. Studer, C., Benkeser, C., Belfanti, S., Huang, Q. (2011). Design and implementation of a parallel turbo-decoder ASIC for 3GPP-LTE. IEEE J Solid-State Circuits, 46, 8–17.

    Article  Google Scholar 

  29. Wong, C., & Chang, H. (2010). Reconfigurable turbo decoder with parallel architecture for 3GPP LTE system. IEEE Trans Circuits Syst II, Exp Briefs, 57(7), 566–570.

    Article  MathSciNet  Google Scholar 

  30. Wong, C., & Chang, H. (2011). High-efficiency processing schedule for parallel turbo decoders using QPP interlaver. IEEE Trans Circuits Syst I, Reg Papers, 58(6), 1412–1420.

    Article  MathSciNet  Google Scholar 

  31. Cheng, C., Tsai, Y., Chen, L., Chandrakasan, A. P. (2010). A 0.077 to 0.168 nJ/bit/iteration Scalable 3GPP LTE Turbo Decoder with an Adaptive Sub-Block Parallel Scheme and an Embedded DVFS Engine’. IEEE Custom Integrated Circuits Conf (CICC), (pp. 1–4).

  32. Sun, Y., & Cavallaro, J.R. (2011). Efficient hardware implementation of a highly-parallel 3GPP LTE/LTE-advance turbo decoder. INTEGRATION, the VLSI journal, 44, 305–315.

    Article  Google Scholar 

  33. Wong, C., & Chang, H. (2011). High-efficiency processing schedule for parallel turbo decoders using QPP interlaver. IEEE Trans Circuits Syst I, Reg Papers, 58(6), 1412–1420.

    Article  MathSciNet  Google Scholar 

  34. Lin, C., Chen, C., Wu, A., Tsai, T. (2009). Low-power memory-reduced traceback map decoding for double-binary convolutional turbo decoder. IEEE Trans Circuits Syst I, Reg Papers, 56(5), 1005–1016.

    Article  MathSciNet  Google Scholar 

  35. Lin, C., Chen, C., Chang, E., Wu, A. (2013). Reconfigurable parallel turbo decoder design for multiple high-mobility 4g systems.Journals of Signal Processing Systems (Springer US), (pp. 1–14).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Shrestha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shrestha, R., Paily, R. Comparative Study of Simplified MAP Algorithms and an Implementation of Non-Parallel-Radix-2 Turbo Decoder. J Sign Process Syst 81, 305–320 (2015). https://doi.org/10.1007/s11265-014-0951-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-014-0951-7

Keywords

Navigation