iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/S11042-017-4921-5
Visual cryptograms of random grids via linear algebra | Multimedia Tools and Applications Skip to main content
Log in

Visual cryptograms of random grids via linear algebra

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Two visual models of image secret sharing have been studied: visual cryptography schemes (VCS), introduced by Naor and Shamir, and visual cryptograms of random grids (VCRG), introduced by Kafri and Keren. VCRG has gained much attention in academia than before to avoid the pixel expansion of VCS. Although there is a strict relation between VCRG and VCS, VCRG can still be improved to achieve a better result. In this paper, based on new insight into linear algebraic technique to construct VCS, where we are able to construct VCS by solving a linear system of more equations at a time, we put forward a new construction of VCRG for general access structures. The effectiveness and advantage of the proposed construction are formally analyzed and experimentally demonstrated. With theoretical and practical interests, our construction exposes new possibilities to the researches of visual models of image secret sharing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abu-Marie W, Gutub A, Abu-Mansour H (2010) Image based steganography using truth table based and determinate array on RGB indicator. Int J Signal Image Process 1(3):196–204

    Google Scholar 

  2. Adhikari A (2014) Linear algebraic techniques to construct monochrome visual cryptographic schemes for general access structure and its applications to color images. Des Codes Crypt 73(3):865–895

    Article  MathSciNet  MATH  Google Scholar 

  3. Ateniese G, Blundo C, De Santis A, Stinson D R (1996) Visual cryptography for general access structures. Inf Comput 129(2):86–106

    Article  MathSciNet  MATH  Google Scholar 

  4. Blundo C, De Santis A, Stinson DR (1999) On the contrast in visual cryptography schemes. J Cryptol 12(4):261–289

    Article  MathSciNet  MATH  Google Scholar 

  5. Cimato S, De Prisco R, De Santis A (2005) Optimal colored threshold cisual cryptography schemes. Des Codes Crypt 35:311–335

    Article  MATH  Google Scholar 

  6. D’Arco P, De Prisco R, De Santis A (2014) Measure-independent characterization of contrast optimal visual cryptography schemes. J Syst Softw 95:89–99

    Article  MATH  Google Scholar 

  7. De Prisco R, De Santis A (2014) On the relation of random grid and deterministic visual cryptography. IEEE Trans Inf Forensics Secur 9(4):653–665

    Article  Google Scholar 

  8. Eisen P A, Stinson D R (2002) Threshold visual cryptography schemes with specified whiteness levels of reconstructed pixels. Des Codes Crypt 25(1):15–61

    Article  MathSciNet  MATH  Google Scholar 

  9. Guo T, Liu F, Wu CK (2013) Visual cryptography for natural images and visual voting. In: Information security and cryptology. Lecture Notes in Computer Science, vol 7763. Springer, Berlin, pp 90– 101

  10. Guo T, Liu F, Wu CK (2013) Threshold visual secret sharing by random grids with improved contrast. J Syst Softw 86:2094–2109

    Article  Google Scholar 

  11. Gutub A, Al-Qahtani A, Tabakh A (2009) Triple-A: secure RGB image steganography based on randomization. In: The 7th ACS/IEEE international conference on computer systems and applications (AICCSA-2009). IEEE, Morocco, pp 400–403

  12. Hawkes L W, Yasinsac A, Cline C (2000) An application of visual cryptography to financial documents. Technical Report TR001001. Florida State University, Tallahassee, pp 1–7

  13. Hou YC (2003) Visual cryptography for color images. Pattern Recogn 36 (7):1619–1629

    Article  Google Scholar 

  14. Hu CM, Tzeng WG (2007) Cheating prevention in visual cryptography. IEEE Trans Image Process 16(1):36–45

    Article  MathSciNet  MATH  Google Scholar 

  15. Jin D, Yan WQ, Kankanhalli MS (2005) Progressive color visual cryptography. J Electron Imaging 14(3):033019

    Article  Google Scholar 

  16. Kafri O, Keren E (1987) Encryption of pictures and shapes by random grids. Optics Lett 12(6):377– 379

    Article  Google Scholar 

  17. Li P, Ma PJ, Li D (2012) Aspect ratio invariant visual cryptography scheme with exible size expansion. ICIC Express Lett 6(8):2033–2038

    Google Scholar 

  18. Lin CC, Tsai WH (2004) Secret image sharing with steganography and authentication. J Syst Softw 73(3):405–414

    Article  Google Scholar 

  19. Liu F, Guo T (2015) Privacy protection display implementation method based on visual passwords. CN Patent App CN 201410542752

  20. Liu F, Wu C, Lin X (2011) Cheating immune visual cryptography scheme. IET Inf Secur 5(1):51–59

    Article  Google Scholar 

  21. Naor M, Pinkas B (1997) Visual authentication and identification. In: Advances in cryptology. Lecture Notes in Computer Science, vol 1294. Springer, Berlin, pp 322–336

  22. Naor M, Shamir A (1995) Visual cryptography. In: Advances in cryptology. Lecture Notes in Computer Science, vol 950. Springer, Berlin, pp 1–12

  23. Parvez MT, Gutub A (2008) RGB intensity based variable-bits image steganography. In: IEEE Asia-pacific services computing conference. IEEE, Taiwan, pp 1322–1327

  24. Shyu S, Jiang H (2013) General constructions for threshold multiple-secret visual cryptographic shcemes. IEEE Trans Inf Forensics Secur 8(5):733–743

    Article  Google Scholar 

  25. Shyu S J (2007) Image encryption by random grids. Pattern Recogn 40(3):1014–1031

    Article  MATH  Google Scholar 

  26. Shyu S J (2013) Visual cryptograms of random grids for general access structures. IEEE Trans Circuits Syst Video Technol 23(3):414–424

    Article  MathSciNet  Google Scholar 

  27. Shyu S J (2015) Visual cryptograms of random grids for threshold access structures. Theor Comput Sci 565:30–49

    Article  MathSciNet  MATH  Google Scholar 

  28. Shyu SJ, Chen MC (2011) Optimum pixel expansions for threshold visual secret sharing schemes. IEEE Trans Inf Forensics Secur 6(3):960–969

    Article  Google Scholar 

  29. Thien CC, Lin JC (2002) Secret image sharing. Comput Graph 26(5):765–770

    Article  Google Scholar 

  30. Wang DS, Yi F, Li X (2009) On general construction for extended visual cryptography schemes. Pattern Recogn 42(11):3071–3082

    Article  MATH  Google Scholar 

  31. Wang RZ, Su CH (2006) Secret image sharing with smaller shadow images. Pattern Recogn Lett 27(6):551–555

    Article  Google Scholar 

  32. Wu X, Sun W (2012) Visual secret sharing for general access structures by random grids. IET Inf Secur 6(4):299–309

    Article  Google Scholar 

  33. Yamaguchi Y (2012) An extended visual cryptography scheme for continuous-tone images. Springer Trans Digit Forensics Watermarking 7128:228–242

    Article  Google Scholar 

  34. Yan WQ, Jin D, Kankanhalli MS (2004) Visual cryptography for print and scan applications. In: IEEE international symposium on circuits and systems, vol 5. IEEE, Canada, pp 572–575

  35. Yan XH, Shen W, Niu XM, Yang CN (2015) Halftone visual cryptography with minimum auxiliary black pixels and uniform image quality. Digital Signal Process 38:53–65

    Article  Google Scholar 

  36. Yang C, Chen T, Ching M (2006) Embed additional private information into two-dimensional bar codes by the visual secret sharing scheme. Integr Comput-Aided Eng 13(2):189–199

    Google Scholar 

  37. Yang C, Wu C, Wang D (2014) A discussion on the relationship between probabilistic visual cryptography and random grid. Inf Sci 278:141–173

    Article  MathSciNet  MATH  Google Scholar 

  38. Yang CN, Chen TS (2006) Reduce shadow size in aspect ratio invariant visual secret sharing schemes using a square block-wise operation. Pattern Recogn 39:1300–1314

    Article  MATH  Google Scholar 

  39. Yang CN, Chen TS, Yu KH, Wang CC (2007) Improvements of image sharing with steganography and authentication. J Syst Softw 80(7):1070–1076

    Article  Google Scholar 

  40. Yu B, Shen G (2014) Multi-secret visual cryptography with deterministic contrast. Multimed Tools Appl 72(2):1867–1886

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewers for their important and helpful comments. This work was supported by the National Natural Science Foundation of China with No.61602513 and No.61671448, the Strategic Priority Research Program of the Chinese Academy of Sciences with No.XDA06010701, and the National Key R&D Program of China with No.2016YFB0800100.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, G., Liu, F., Fu, Z. et al. Visual cryptograms of random grids via linear algebra. Multimed Tools Appl 77, 12871–12899 (2018). https://doi.org/10.1007/s11042-017-4921-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-4921-5

Keywords

Navigation