Abstract
Let X and Y be completely regular locales. We show that the properness of a localic map f: X → Y can be characterized in terms of extension between compactifications.
Similar content being viewed by others
References
Vermeulen, J.J.C.: Proper maps of locales. J. Pure Appl. Algebra 92, 79–107 (1994)
Vermeulen, J.J.C.: A note on stably closed maps of locales. J. Pure Appl. Algebra 157, 335–339 (2001)
Moerdijk, I., Vermeulen, J.J.C.: Proper maps of toposes. Mem. Am. Math. Soc. 705 (2000)
Johnstone, P.T.: Stone Spaces. Cambridge University Press, Cambridge (1982)
Johnstone, P.T.: Sketches of an Elephent: A Topos Theory Compendium, vol. 2. Oxford Science Publications, Oxford (2002)
Banaschewski, B.: Compactification of frames. Math. Nachr. 149, 105–116 (1990)
He, W.: A constructive proof of the Gelfand-Kolmogorov theorem. Appl. Categ. Struct. 12, 197–202 (2004)
Author information
Authors and Affiliations
Corresponding author
Additional information
Project supported by NSF of China(10731050).
Rights and permissions
About this article
Cite this article
He, W., Luo, M. A Note on Proper Maps of Locales. Appl Categor Struct 19, 505–510 (2011). https://doi.org/10.1007/s10485-009-9196-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10485-009-9196-1