Abstract
We study cosmological perturbations for a ghost free massive gravity theory formulated with a dynamical extra metric that is needed to massive deform GR. In this formulation FRW background solutions fall in two branches. In the dynamics of perturbations around the first branch solutions, no extra degree of freedom with respect to GR is present at linearized level, likewise what is found in the Stuckelberg formulation of massive gravity where the extra metric is flat and non dynamical. In the first branch, perturbations are probably strongly coupled. On the contrary, for perturbations around the second branch solutions all expected degrees of freedom propagate. While tensor and vector perturbations of the physical metric that couples with matter follow closely the ones of GR, scalars develop an exponential Jeans-like instability on sub-horizon scales. On the other hand, around a de Sitter background there is no instability. We argue that one could get rid of the instabilities by introducing a mirror dark matter sector minimally coupled to only the second metric.
Similar content being viewed by others
References
V. Rubakov and P. Tinyakov, Infrared-modified gravities and massive gravitons, Phys. Usp. 51 (2008) 759 [arXiv:0802.4379] [INSPIRE].
K. Hinterbichler, Theoretical aspects of massive gravity, Rev. Mod. Phys. 84 (2012) 671 [arXiv:1105.3735] [INSPIRE].
C. de Rham and G. Gabadadze, Generalization of the Fierz-Pauli action, Phys. Rev. D 82 (2010) 044020 [arXiv:1007.0443] [INSPIRE].
M. Fierz and W. Pauli, On relativistic wave equations for particles of arbitrary spin in an electromagnetic field, Proc. Roy. Soc. Lond. A 173 (1939) 211 [INSPIRE].
H. van Dam and M. Veltman, Massive and massless Yang-Mills and gravitational fields, Nucl. Phys. B 22 (1970) 397 [INSPIRE].
Y. Iwasaki, Consistency condition for propagators, Phys. Rev. D 2 (1970) 2255 [INSPIRE].
V.I. Zakharov, Linearized gravitation theory and the graviton mass, JETP Lett. 12 (1971) 312 [Pisma Zh. Eksp. Teor. Fiz. 12 (1970) 447] [INSPIRE].
A. Vainshtein, To the problem of nonvanishing gravitation mass, Phys. Lett. B 39 (1972) 393 [INSPIRE].
N. Arkani-Hamed, H. Georgi and M.D. Schwartz, Effective field theory for massive gravitons and gravity in theory space, Annals Phys. 305 (2003) 96 [hep-th/0210184] [INSPIRE].
C. de Rham, G. Gabadadze and A.J. Tolley, Resummation of massive gravity, Phys. Rev. Lett. 106 (2011) 231101 [arXiv:1011.1232] [INSPIRE].
D. Boulware and S. Deser, Inconsistency of finite range gravitation, Phys. Lett. B 40 (1972) 227 [INSPIRE].
S. Hassan and R.A. Rosen, Resolving the ghost problem in non-linear massive gravity, Phys. Rev. Lett. 108 (2012) 041101 [arXiv:1106.3344] [INSPIRE].
S. Hassan, R.A. Rosen and A. Schmidt-May, Ghost-free massive gravity with a general reference metric, JHEP 02 (2012) 026 [arXiv:1109.3230] [INSPIRE].
C. de Rham, G. Gabadadze and A. Tolley, Ghost free massive gravity in the Stückelberg language, Phys. Lett. B 711 (2012) 190 [arXiv:1107.3820] [INSPIRE].
T. Damour and I.I. Kogan, Effective lagrangians and universality classes of nonlinear bigravity, Phys. Rev. D 66 (2002) 104024 [hep-th/0206042] [INSPIRE].
C. Isham, A. Salam and J. Strathdee, F-dominance of gravity, Phys. Rev. D 3 (1971) 867 [INSPIRE].
A. Salam and J. Strathdee, A class of solutions for the strong gravity equations, Phys. Rev. D 16 (1977) 2668 [INSPIRE].
C. Deffayet and T. Jacobson, On horizon structure of bimetric spacetimes, Class. Quant. Grav. 29 (2012) 065009 [arXiv:1107.4978] [INSPIRE].
L. Berezhiani, G. Chkareuli, C. de Rham, G. Gabadadze and A. Tolley, On black holes in massive gravity, Phys. Rev. D 85 (2012) 044024 [arXiv:1111.3613] [INSPIRE].
Z. Berezhiani, D. Comelli, F. Nesti and L. Pilo, Exact spherically symmetric solutions in massive gravity, JHEP 07 (2008) 130 [arXiv:0803.1687] [INSPIRE].
D. Comelli, M. Crisostomi, F. Nesti and L. Pilo, Spherically symmetric solutions in ghost-free massive gravity, Phys. Rev. D 85 (2012) 024044 [arXiv:1110.4967] [INSPIRE].
G. D’Amico et al., Massive cosmologies, Phys. Rev. D 84 (2011) 124046 [arXiv:1108.5231] [INSPIRE].
L. Alberte, Massive gravity on curved background, arXiv:1110.3818 [INSPIRE].
A.E. Gumrukcuoglu, C. Lin and S. Mukohyama, Open FRW universes and self-acceleration from nonlinear massive gravity, JCAP 11 (2011) 030 [arXiv:1109.3845] [INSPIRE].
D. Comelli, M. Crisostomi, F. Nesti and L. Pilo, FRW cosmology in ghost free massive gravity, JHEP 03 (2012) 067 [arXiv:1111.1983] [INSPIRE].
M. von Strauss, A. Schmidt-May, J. Enander, E. Mortsell and S. Hassan, Cosmological solutions in bimetric gravity and their observational tests, JCAP 03 (2012) 042 [arXiv:1111.1655] [INSPIRE].
M.S. Volkov, Cosmological solutions with massive gravitons in the bigravity theory, JHEP 01 (2012) 035 [arXiv:1110.6153] [INSPIRE].
K. Koyama, G. Niz and G. Tasinato, The self-accelerating universe with vectors in massive gravity, JHEP 12 (2011) 065 [arXiv:1110.2618] [INSPIRE].
A.E. Gumrukcuoglu, C. Lin and S. Mukohyama, Cosmological perturbations of self-accelerating universe in nonlinear massive gravity, JCAP 03 (2012) 006 [arXiv:1111.4107] [INSPIRE].
A. Higuchi, Forbidden mass range for spin-2 field theory in de Sitter space-time, Nucl. Phys. B 282 (1987) 397 [INSPIRE].
Z. Berezhiani, D. Comelli, F. Nesti and L. Pilo, Spontaneous Lorentz breaking and massive gravity, Phys. Rev. Lett. 99 (2007) 131101 [hep-th/0703264] [INSPIRE].
D. Blas, D. Comelli, F. Nesti and L. Pilo, Lorentz breaking massive gravity in curved space, Phys. Rev. D 80 (2009) 044025 [arXiv:0905.1699] [INSPIRE].
S. Hassan and R.A. Rosen, Bimetric gravity from ghost-free massive gravity, JHEP 02 (2012) 126 [arXiv:1109.3515] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Comelli, D., Crisostomi, M. & Pilo, L. Perturbations in massive gravity cosmology. J. High Energ. Phys. 2012, 85 (2012). https://doi.org/10.1007/JHEP06(2012)085
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP06(2012)085