Abstract
In this paper, we propose a robust fully non-supervised method dedicated to the segmentation of the brain in T1-weighted MR images. The first step consists in the analysis of the scale-space of the histogram first and second derivative. We show first that the crossings in scale-space of trajectories of extrema of different derivative orders follow regular topological properties. These properties allow us to design a new structural representation of a 1D signal. Then we propose an heuristics using this representation to infer statistics on grey and white matter grey level values from the histogram. These statistics are used by an improved morphological process combining two opening sizes to segment the brain. The method has been validated with 70 images coming from 3 different scanners and acquired with various MR sequences.
Chapter PDF
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
M. J. Carlotto. Histogram analysis using a scale-space approach. IEEE PAMI, 9(1):121–129, 1987.
O. Coulon, I. Bloch, V. Frouin, and J.-F. Mangin. Multiscale measures in linear scale-space for characterizing cerebral functional activations. In Scale-Space’97, Utrecht, number 1252 in LNCS, Springer, pp. 188–199, 1997.
S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE PAMI, 6(6):721–741, 1984.
A. Goshtasby and W. D. O’Neil. Curve fitting by a sum of Gaussians. CVGIP: Graphical Models and Image Processing, 56(4):281–288, 1994.
J.J. Koenderink. The structure of images. Biol. Cybernetics, 50:363–370, 1984.
F. Kruggel and G. Lohmann. Automatical adaption of the stereotactical coordinate system in brain MRI datasets. In XVth IPMI, Poultney, USA, pages 470–476, 1997.
T. Lindeberg. Scale-space theory in computer vision. Kluwer, 1994.
J.-F. Mangin, I. Bloch, J. Lopez-Krahe, and V. Frouin. Chamfer distances in anisotropic 3D images. In VII Europ. Signal Proces. Conf., pp 975–978, 1994.
J.-F. Mangin, V. Frouin, I. Bloch, J. Regis, and J. López-Krahe. From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations. J. Math. Imag. Vision, 5(4):297–318, 1995.
T. McInerney and D. Terzopoulos. Deformable models in medical image analysis: a survey. Medical Image Analysis, 1(2):91–108, 1996.
W. J. Niessen, K. L. Vincken, and M. A. Viergever. Comparison of multiscale representations for a linking-based image segmentation model. In IEEE/SIAM MMBIA, San Francisco, pp. 263–272, 1996.
I. Pollak, A. S. Willsky, and H. Krim. Scale space analysis by stabilized inverse diffusion equation. In Scale-Space ’97, LNCS-1252, Springer, pp. 200–211, 1997.
L. Vérard, P. Allain, J.-M. Travère, J. C. Baron, and D. Bloyet. Fully automatic identification of AC and PC landmarks on brain MRI using scene analysis. IEEE TMI, pages 610–616, 1997.
B. J. H. Verwer, P. W. Verbeek, and S. T. Dekker. An efficient uniform cost algorithm applied to distance transforms. IEEE PAMI, 11(4):425–428, 1989.
W. M. Wells III, W. E. L. Grimson, R. Kikinis, and F. A. Jolesz. Actaptive segmentation of MRI data. IEEE TMI, 15(4):429–442, 1996.
A.P. Witkin. Scale-space filtering. In International Joint Conference on Artificial Intelligence, pages 1019–1023, 1983.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mangin, J.F., Coulon, O., Frouin, V. (1998). Robust brain segmentation using histogram scale-space analysis and mathematical morphology. In: Wells, W.M., Colchester, A., Delp, S. (eds) Medical Image Computing and Computer-Assisted Intervention — MICCAI’98. MICCAI 1998. Lecture Notes in Computer Science, vol 1496. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0056313
Download citation
DOI: https://doi.org/10.1007/BFb0056313
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-65136-9
Online ISBN: 978-3-540-49563-5
eBook Packages: Springer Book Archive