iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/BFb0020960
ε-Approximation of differential inclusions | SpringerLink
Skip to main content

ε-Approximation of differential inclusions

  • Conference paper
  • First Online:
Hybrid Systems III (HS 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1066))

Included in the following conference series:

Abstract

For a Lipschitz differential inclusion x ∈ f(x), we give a method to compute an arbitrarily close approimation of Reach f(X0, t) — the set of states reached after time t starting from an initial set X0. For a differential inclusion x ∈ f(x), and any ε>0, we define a finite sample graph A . Every trajectory φ of the differential inclusion x ∈f(x) is also a “trajectory” in A . And every “trajectory” η of A has the property that dist(ή(t), f(η(t))) ≤ ε. Using this, we can compute the εinvariant sets of the differential inclusion — the sets that remain invariant under ε-perturbations in f.

Research supported by the California PATH program and by the National Science Foundation under grant ECS9417370.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Abraham, J.E. Marsden, and T. Raitu, Manifolds, Tensor Analysis, and Applications, Springer-Verlag, 1988.

    Google Scholar 

  2. R. Alur et. al., The Algorithmic Analysis of Hybrid Systems, Theoretical Computer Science, Feb. 1995.

    Google Scholar 

  3. R.Alur, C.Courcoubetis, T.A. Henzinger and P.-H. Ho, Hybrid automata: an algorithmic approach to the specification and verification of hybrid systems, Hybrid Systems, LNCS 736, Springer-Verlag.

    Google Scholar 

  4. J.P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, 1984.

    Google Scholar 

  5. J.P. Aubin, Viability Theory, Birkhauser, 1991.

    Google Scholar 

  6. V. Borkar and P. Varaiya, ε-Approximation of Differential Inclusion using Rectangular Differential Inclusion, Notes.

    Google Scholar 

  7. J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, 1983.

    Google Scholar 

  8. T. Henzinger, P. Kopke, A. Puri and P. Varaiya, What's Decidable About Hybrid Automata, STOCS 1995.

    Google Scholar 

  9. M. W. Hirsh and S. Smale Differential Equations, Dynamical Systems, and Linear Algebra, Academic Press, Inc., 1974.

    Google Scholar 

  10. X.Nicollin, A. Olivero, J. Sifakis, and S.Yovine, An Approach to the Description and Analysis of Hybrid Systems, Hybrid Systems, LNCS 736, Springer-Verlag, 1993.

    Google Scholar 

  11. A. Puri and P. Varaiya, Decidability of Hybrid System with Rectangular Differential Inclusions, CAV 94: Computer-Aided Verification, Lecture Notes in Computer Science 818, pages 95–104. Springer-Verlag, 1994.

    Google Scholar 

  12. A. Puri and P. Varaiya, Verification of Hybrid Systems using Abstractions, Hybrid Systems II, LNCS 999, Springer-Verlag, 1995.

    Google Scholar 

  13. A. Puri and P. Varaiya, Driving Safely in Smart Cars, California PATH Research Report UCB-ITS-PRR-95-24, July 1995.

    Google Scholar 

  14. C. Sparrow, The Lorenz Equations, Springer-Verlag, 1982.

    Google Scholar 

  15. P. P. Varaiya, On the Trajectories of a Differential System, in A.V. Balakrishnan and L.W. Neustadt, editor, Mathematical Theory of Control, Academic Press, 1967.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rajeev Alur Thomas A. Henzinger Eduardo D. Sontag

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Puri, A., Borkar, V., Varaiya, P. (1996). ε-Approximation of differential inclusions. In: Alur, R., Henzinger, T.A., Sontag, E.D. (eds) Hybrid Systems III. HS 1995. Lecture Notes in Computer Science, vol 1066. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0020960

Download citation

  • DOI: https://doi.org/10.1007/BFb0020960

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61155-4

  • Online ISBN: 978-3-540-68334-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics