Abstract
A detailed compartmental model of a cortical pyramidal cell is used to determine the effect of the spatial distribution of synapses across a dendritic tree on the pattern recognition capability of the neuron. By setting synaptic strengths according to the clipped Hebbian learning rule used in the associative net neural network model, the cell is able to recognise input patterns, but with a one to two order of magnitude decrease in performance compared to the computing units in the network model. Performance of the cell is optimised by particular forms of input signal, but is not altered by different pattern recognition criteria.
Preview
Unable to display preview. Download preview PDF.
References
M. Bennett, W. Gibson, and J. Robinson. Dynamics of the CA3 pyramidal neuron autoassociative memory network in the hippocampus. Phil. Trans. Roy. Soc. Lond. B, 343:167–187, 1994.
O. Bernander. Synaptic Integration and Its Control in Neocortical Pyramidal Cells. PhD thesis, California Institute of Technology, 1993.
O. Bernander, C. Koch, and R. Douglas. Amplification and linearization of distal synaptic input to cortical pyramidal cells. J. Neurophys., 72:2743–2753, 1994.
T. Brown, E. Kairiss, and C. Keenan. Hebbian synapses: biophysical mechanisms and algorithms. Ann. Rev. Neurosci., 13:475–511, 1990.
T. Brown, Z. Mainen, A. Zador, and B. Claiborne. Self-organization of Hebbian synapses in hippocampal neurons. In R. Lippmann, J. Moody, and D. Touretzky, editors, Neural Information Processing Systems 3, pages 39–45, San Mateo, California, 1991. Morgan Kaufmann.
P. Dayan and D. Willshaw. Optimising synaptic learning rules in linear associative memories. Biol. Cybern., 65:253–265, 1991.
R. Douglas, K. Martin, and D. Whitteridge. An intracellular analysis of the visual responses of neurones in cat visual cortex. J. Physiol., 440:659–696, 1991.
B. Graham and D. Willshaw. Capacity and information efficiency of the associative net. Network, 8:35–54, 1997.
M. Hines. A program for simulation of nerve equations with branching geometries. Int. J. Biomed. Comput., 24:55–68, 1989.
D. Johnston, J. Magee, C. Colbert, and B. Christie. Active properties of neuronal dendrites. Ann. Rev. Neurosci., 19:165–186, 1996.
D. Marr. Simple memory: a theory for archicortex. Phil. Trans. Roy. Soc. Lond. B, 262:23–81, 1971.
B. Mel. Synaptic integration in an excitable dendritic tree. J. Neurophys., 70:1086–1101, 1993.
A. Treves and E. Rolls. Computational analysis of the role of the hippocampus in memory. Hippocampus, 4:374–391, 1994.
D. Willshaw. Models of distributed associative memory. PhD thesis, University of Edinburgh, 1971.
D. Willshaw, O. Buneman, and H. Longuet-Higgins. Non-holographic associative memory. Nature, 222:960–962, 1969.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Graham, B., Willshaw, D. (1997). A model of clipped hebbian learning in a neocortical pyramidal cell. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, JD. (eds) Artificial Neural Networks — ICANN'97. ICANN 1997. Lecture Notes in Computer Science, vol 1327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0020148
Download citation
DOI: https://doi.org/10.1007/BFb0020148
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-63631-1
Online ISBN: 978-3-540-69620-9
eBook Packages: Springer Book Archive