iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/BFb0015036
Efficient implementation of an algebraic specification language | SpringerLink
Skip to main content

Efficient implementation of an algebraic specification language

  • Part I Algebraic Specification
  • Conference paper
  • First Online:
Algebraic Methods: Theory, Tools and Applications (Algebraic Methods 1987)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 394))

Included in the following conference series:

Abstract

We consider the implementation of SRDL, a small algebraic specification language with particular emphasis on structural recursion which is for abstract data types the analogue of primitive recursion. We demonstrate how the regular behaviour of structural recursion can be exploited for generating better code. Technically, this is achieved by generalizing loop iteration on integers to bottom-up iteration on trees. Here, it is possible to replace the function stack of activation records by simpler control stacks. On the machine level, this tree walk is performed by a generalization of the Schorr-Waite algorithm to n-ary trees, causing only a small overhead in execution time but no additional memory requirements. The resulting code is faster and requires less storage than usual call by value code.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.M. Burstall, D.B. MacQueen, D.T. Sannella, HOPE — An Experimental Applicative Language, Univ. Edinburgh, Dept. of Comp.Sci., Report CSR-62-80

    Google Scholar 

  2. M.J.C. Gordon, A.J.R.G. Milner, L. Morris, M. Newey, C. Wadsworth, A Metalanguage for Interactive Proofs in LCF, 5th ACM Symp. Princ. of Prog.Lang., Tucson 1978

    Google Scholar 

  3. D. Gries, The Schorr-Waite Graph Marking Algorithm, Acta Informatica 11 (1979), 223–232

    Article  Google Scholar 

  4. K. Indermark, Functional compiler description, Banach Center Publications 21 (1988), Polish Academy of Sciences, Warsaw

    Google Scholar 

  5. K. Indermark, H. Klaeren, Compiling Fibonacci-like Recursion, SIGPLAN Notices 22 (1987), No. 6, 101–108

    Article  Google Scholar 

  6. H. Klaeren, Algebraische Spezifikation — Eine Einführung, Springer Lehrbuch Informatik, 1983

    Google Scholar 

  7. H. Klaeren, A Constructive Method for Abstract Algebraic Software Specification, Theoretical Computer Science, 30 (1984), 139–204

    Google Scholar 

  8. H. Klaeren, Ein algebraischer Ansatz zur Rekursionselimination, Habilitationsschrift, RWTH Aachen, 1988

    Google Scholar 

  9. H. Klaeren, ModAs/86 User Manual, Berichte des Lehrstuhls für Informatik II, RWTH Aachen, 1988

    Google Scholar 

  10. H. Klaeren, K. Indermark, A New Implementation Technique for Recursive Function Definitions, Aachener Informatik-Berichte Nr. 87-10

    Google Scholar 

  11. J. Loeckx, A Formal Description of the Specification Language OBSCURE, Universität des Saarlandes, FB 10, Bericht A85/15

    Google Scholar 

  12. H.C. Mayr, P.C. Lockemann, K.R. Dittrich, Operational Replacement Schemes — A Practice-Oriented Approach to the Specification of Abstract Data Types, Universität Karlsruhe, Fakultät für Informatik, Bericht 11/80

    Google Scholar 

  13. A. Schubert, Modularisierung algebraischer Spezifikationen zum Einsatz im System-und Programmentwurf, Diplomarbeit, RWTH Aachen, 1986

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Martin Wirsing Jan A. Bergstra

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Klaeren, H., Indermark, K. (1989). Efficient implementation of an algebraic specification language. In: Wirsing, M., Bergstra, J.A. (eds) Algebraic Methods: Theory, Tools and Applications. Algebraic Methods 1987. Lecture Notes in Computer Science, vol 394. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0015036

Download citation

  • DOI: https://doi.org/10.1007/BFb0015036

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51698-9

  • Online ISBN: 978-3-540-46758-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics