iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/BF03193561
The cerebellar paraflocculus and the subarcuate fossa inMonodelphis domestica and other marsupial mammals — ontogeny and phylogeny of a brain-skull interaction | Mammal Research Skip to main content

Advertisement

Log in

The cerebellar paraflocculus and the subarcuate fossa inMonodelphis domestica and other marsupial mammals — ontogeny and phylogeny of a brain-skull interaction

  • Published:
Acta Theriologica Aims and scope Submit manuscript

Abstract

The development of the subarcuate fossa and the cerebellar paraflocculus was studied in an ontogenetic series ofMonodelphis domestica Wagner, 1842 The spatial relation between these structures was examined qualitatively in adult specimens of several marsupial taxa. The fossa is first formed without participation of the cerebellar paraflocculus, which fills the fossa first fully and then partially later in development. The correlation between the size of the petrosal lobule of the paraflocculus and the subarcuate fossa in adults is weak. The volume of the subarcuate fossa was measured in 68 specimens representing 19 species of recent marsupials. Its size is negatively allometric with respect to skull size. The didelphids examined (‘large opossums’) have relatively smaller subarcuate fossae than the other marsupials examined, andSarcophilus laniarius is the major outlier, with a very small fossa. Loss of the subarcuate fossa has occurred at least twice in metatherian evolution (some sparassodonts and wombats). All marsupials examined to date, with the exception of wombats, have a differentiated petrosal lobule of the paraflocculus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Archer M. 1976. The basicranial region of marsupicarnivores (Marsupialia), interrelationships of carnivorous marsupials, and affinities of the insectivorous marsupial peramelids. Zoological Journal of the Linnean Society 59: 217–322.

    Article  Google Scholar 

  • Azizi S. A. and Woodward D. J. 1990. Interactions of visual and auditory mossy fiber inputs in the paraflocculus of the rat: a gating action of multimodal inputs. Brain Research 533: 255–262.

    Article  CAS  PubMed  Google Scholar 

  • Bast T. H. 1932. Development of the otic capsule. I. Resorption of the cartilage in the canal portion of the otic capsule in human fetuses and its relation to the growth of the semicircular canals. Archives of Otolaryngology 16: 19–38.

    Google Scholar 

  • Beer G. R. de 1937. The development of the vertebrate skull. Reprint. University of Chicago Press, 1985, Clarendon Press, Oxford: 1–554.

    Google Scholar 

  • Bemmelen J. F. van 1901. Der Schädelbau der Monotremen. Semons Zoologische Forschungsreisen in Australien und dem Malayischen Archipel 3: 729–798.

    Google Scholar 

  • Cifelli R. 1982. The petrosal structure ofHyopsodus with respect to that some other ungulates, and its phylogenetic implications. Journal of Paleontology 56: 795–805.

    Google Scholar 

  • Clark C. T. and Smith K. K. 1993. Cranial osteogenesis inMonodelphis domestica (Didelphidae) andMacropus eugenii (Macropodidae). Journal of Morphology 215: 119–149.

    Article  CAS  PubMed  Google Scholar 

  • Cothran E. G., Aivaliotis M. J. and Vandeberg J. L. 1985. The effects of diet on growth and reproduction in gray short-tailed opossums (Monodelphis domestica). Journal of Experimental Zoology 236: 103–114.

    Article  CAS  PubMed  Google Scholar 

  • Flannery T. F. 1989. Phylogeny of the Macropodoidea: a study of convergence. [In: Kangaroos, wallabies and rat-kangaroos. Vol. I. G. Grigg, P. Jarman and I. Hume, eds]. Surrey Beatty & Sons Pty Limited, Sydney, New South Wales: 1–46.

    Google Scholar 

  • Gannon P. J., Eden A. R. and Laitman J. T. 1988. The subarcuate fossa and cerebellum of extant primates: comparative study of a skull-brain interface. American Journal of Physical Anthropology 77: 143–164.

    Article  CAS  PubMed  Google Scholar 

  • Gao J.-H., Parsons L. M., Bower J. M., Xiong J., Li J. and Fox P. T. 1996. Cerebellum implicated in sensory acquisition and discrimination rather than motor control. Science 272: 545–547.

    Article  CAS  PubMed  Google Scholar 

  • Geisler J. H. and Luo Z. 1998. Relationships of Cetacea to terrestrial ungulates and the evolution of cranial vasculature in Cete. [In: The emergence of whales. J. G. M. Thewissen, ed]. Plenum Press, New York: 163–212.

    Google Scholar 

  • Haight J. R. and Murray P. F. 1981. The cranial endocast of the early Miocene marsupial,Wynardia bassiana: an assessment of taxonomic relationships based upon comparisons with recent forms. Brain, Behaviour and Evolution 19: 17–36.

    Article  CAS  Google Scholar 

  • Haight J. R. and Nelson J. E. 1987. A brain that doesn’t fit its skull: a comparative study of the brain and endocranium of the koala,Phascolarctos cinereus (Marsupialia: Phascolarctidae). [In: Possums and opossums: Studies in evolution. M. Archer, ed]. Surrey Beatty & Sons and the Royal Zoological Society of New South Wales, Sydney: 331–352.

    Google Scholar 

  • Hilding D. A. 1987. Petrous apex and subarcuate fossa maturation. Laryngoscope 97: 1129–1135.

    Article  CAS  PubMed  Google Scholar 

  • Kappers C. U. A., Huber G. C. and Crosby E. C. 1960. The comparative anatomy of the nervous system of vertebrates, inlcuding man. Hafner Publishing, New York: 1–1239.

    Google Scholar 

  • Kawano K., Takemura A., Inoue Y., Kitama T., Kobayashi Y. and Mustari M. J. 1996. Visual inputs to cerebellar ventral paraflocculus during ocular following responses. Progress in Brain Research: 112415–112422.

  • Kuhn H.-J. 1971. Die Entwicklung und Morphologie des Schädels vonTachyglossus aculeatus. Abhandlungen der Senckenbergischen Naturforschenden Gesselschaft 528: 1–224.

    Google Scholar 

  • Luo Z. and Gingerich P. D. 1999. Terrestrial Mesonychia to aquatic Cetacea: transformation of the basicranium and evolution of hearing in whales. University of Michigan Papers in Paleontology 31: 1–98.

    Google Scholar 

  • MacIntyre G. T. 1972. The trisulcate petrosal pattern of mammals. [In: Evolutionary biology. Vol. 6. T. Dobzhansky, M. K. Hecht and W. C. Steere, eds]. Appleton-Century-Crofts, New York: 275–303.

    Google Scholar 

  • MacPhee R. D. E. 1994. Morphology, adaptations, and relationships ofPlesiorycteropus, and a diagnosis of a new order of eutherian mammals. Bulletin of the American Museum of Natural History: 1–214.

  • Maier W. 1987. The ontogenetic development of the orbitotemporal region in the skull ofMonodelphis domestica (Didelphidae, Marsupialia), and the problem of the mammalian alisphenoid. [In: Morphogenesis of the mammalian skull. H.-J. Kuhn and U. Zeller, eds]. Mammalia Depicta, Verlag Paul Parey, Hamburg: 71–90.

    Google Scholar 

  • Maier W. 1999. On the evolutionary biology of early mammals — with methodological remarks on the interaction between ontogenetic adaptation and phylogenetic transformation. Zoologischer Anzeiger 238: 55–74.

    Google Scholar 

  • Marshall L. G. 1977. A new species ofLycopsis (Borhyaenidae: Marsupialia) from the La Venta fauna (late Miocene) of Colombia, South America. Journal of Paleontology 51: 633–642.

    Google Scholar 

  • Marshall L. G., Case J. A. and Woodburne M. O. 1990. Phylogenetic relationships of the families of marsupials. [In: Current mammalogy. Vol. 2. H. H. Genoways, ed]. Plenum Press, New York: 433–502.

    Google Scholar 

  • Marshall L. G. and de Muizon C. 1995. Part II: The skull. [In:Pucadelphys andinus (Marsupialia, Mammalia) from the early Paleocene of Bolivia. C. de Muizon, ed]. Mémoires du Museum National d’Histoire Naturelle, Paris 165: 21–90.

  • McClure T. D. and Daron G. H. 1971. The relationship of the developing inner ear, subarcuate fossa and paraflocculus in the rat. American Journal of Anatomy 130: 235–249.

    Article  CAS  PubMed  Google Scholar 

  • Muizon C. de 1994. A new carnivorous marsupial from the Palaeocene of Bolivia and the problem of marsupial monophyly. Nature 370: 208–211.

    Article  Google Scholar 

  • Muizon C. de 1998.Mayulestes ferox, a borhyaenoid (Metatheria, Mammalia) from the early Paleocene of Bolivia. Phylogenetic and palaeobiologic implications. Geodiversitas 20: 19–142.

    Google Scholar 

  • Muizon C. de 1999. Marsupial skulls from the Deseadan (Late Oligocene) of Bolivia and phylogenetic analysis of the Borhyaenoidea (Marsupialia, Mammalia). Geobios 32: 483–509.

    Article  Google Scholar 

  • Nagao S. 1992. Different roles of flocculus and ventral paraflocculus for oculomotor control in the primate. Neuroreport 3: 13–16.

    Article  CAS  PubMed  Google Scholar 

  • Novacek M. J. and Wyss A. R. 1986. Higher-level relationships of the recent eutherian orders: Morphological evidence. Cladistics 2: 257–287.

    Article  Google Scholar 

  • Rougier G. W., Wible J. R. and Hopson J. A. 1992. Reconstruction of the cranial vessels in the Early Cretaceous mammalVincelestes neuquenianus: Implications for the evolution of the mammalian cranial vasculature system. Journal of Vertebrate Paleontology 12: 188–216.

    Article  Google Scholar 

  • Rougier G. W., Wible J. R. and Hopson J. A. 1996. Basicranial anatomy ofPriacodon fruitaensis (Triconodontidae, Mammalia) from the late Jurassic of Colorado, and a reappraisal of mammaliaform interrelationships. American Museum Novitates 3183: 1–38.

    Google Scholar 

  • Rougier G. W., Wible J. R. and Novacek M. J. 1998. Implications ofDeltatheridium specimens for early marsupial history. Nature 396: 459–463.

    Article  CAS  PubMed  Google Scholar 

  • Sall J., Ng K., Hecht M., Tilley D. and Potter R. 1994. JMP: Statistics Made Visual (Computer Program). SAS Institute, Cary, North Carolina.

    Google Scholar 

  • Salles L. O. 1992. Felid phylogenetics: Extant taxa and skull morphology (Felidae, Aeluroidea). American Museum Novitates 3047: 1–67.

    Google Scholar 

  • Saunders N. R., Adam E., Reader M. and Mllgrd K. 1989.Monodelphis domestica (grey short-tailed opossum): an accessible model for studies of early neocortical development. Anatomy and Embryology 180: 227–236.

    Article  CAS  PubMed  Google Scholar 

  • Smith K. K. 1997. Comparative patterns of craniofacial development in eutherian and metatherian mammals. Evolution 51: 1663–1678.

    Article  Google Scholar 

  • Sonntag C. F. 1922. Myology and classification of the wombat. Proceedings of the Zoological Society of London 2: 863–896.

    Google Scholar 

  • Springer M. S., Kirsch J. A. W. and Case J. A. 1997. The chronicle of marsupial evolution. [In: Molecular evolution and adaptive radiation. T. J. Givnish and K. J. Sytsma, eds]. Cambridge University Press, New York: 129–161.

    Google Scholar 

  • Starck D. 1995. Lehrbuch der speziellen Zoologie. Wirbeltiere. Teil 5: Säugetiere. Gustav Fischer Verlag, Jena: 1–1241.

    Google Scholar 

  • Wegner R. N. 1964. Der Schädel des Beutelbären (Phascolarctos cinereus Goldfuss 1819) und seine Umformung durch lufthaltige Nebenhölen. Abhandlungen der Deutschen Akademie der Wissenschaften zu Berlin 1964: 1–86.

    Google Scholar 

  • Wible J. R., Rougier G. W., Novacek M. J., McKenna M. C. and Dashzeveg D. 1995. A mammalian petrosal from the early Cretaceous of Mongolia: implications for the evolution of the ear region and mammaliamorph interrelationships. American Museum Novitates 3149: 1–19.

    Google Scholar 

  • Zeller U. 1989. Die Entwicklung und Morphologie des Schädels vonOrnitorhynchus anatinus (Mammalia: Prototheria: Monotremata). Abhandlungen der Senckenbergische Naturforschenden Gesselschaft 545: 1–156.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo R. Sánchez-Villagra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez-Villagra, M.R. The cerebellar paraflocculus and the subarcuate fossa inMonodelphis domestica and other marsupial mammals — ontogeny and phylogeny of a brain-skull interaction. Acta Theriol 47, 1–14 (2002). https://doi.org/10.1007/BF03193561

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03193561

Key words

Navigation