iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/BF01952784
Optimal parallel quicksort on EREW PRAM | BIT Numerical Mathematics Skip to main content
Log in

Optimal parallel quicksort on EREW PRAM

  • Part I Computer Science
  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we present parallel quicksort algorithms running inO((n/p+logp) logn) expected time andO((n/p+logp+log logn) logn) deterministic time respectively, and both withO(n) space by usingp processors on EREW PRAM. Whenp=O(n/logn), the cost is optimal, in terms of the product of time and number of processors. These algorithms can be used to obtain parallel algorithms for constructing balanced binary search trees without using sorting algorithms. One of our quicksort algorithms leads to a parallel quickhull algorithm on EREW PRAM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Abrahamson, N. Dadoun, D. G. Kirkpatrick and T. Przytycka,A simple parallel tree contraction algorithm, Journal of Algorithms, vol. 10, 1989, pp. 287–302.

    Google Scholar 

  2. A. Aggarwalet al., Parallel computational geometry, Algorithmica, vol. 3, 1988, pp. 293–327.

    Google Scholar 

  3. S. G. Akl,Parallel Sorting Algorithms, Academic, Orlando, FL., 1985.

    Google Scholar 

  4. S. G. Akl,Parallel selection in O(log logn)time using O(n/log logn) processors, Technical Report. No. 221, Dept. of Computing and Information Science, Queen's University, Kingston, Ontario, March 1988.

    Google Scholar 

  5. A. V. Aho, J. E. Hopcroft and J. D. Ullman,The Design and Analysis of Computer Algorithms, Addison-Wesley Pub. Co., 1974.

  6. M. J. Atallah and M. T. Goodrich,Efficient parallel solutions to some geometric problems, J. of Parallel and Distributed Computing, vol. 3, 1986, pp. 492–507.

    Google Scholar 

  7. D. Bitton, D. J. DeWitt, D. K. Hsiao and J. Menon,A taxonomy of parallel sorting, Computing Surveys, vol. 13, No. 3, 1984, pp. 287–318.

    Google Scholar 

  8. R. P. Brent,The parallel evaluation of general arithmetic expressions, J. ACM, vol. 21, 1974, pp. 201–206.

    Google Scholar 

  9. R. Cole,Parallel merge sort, SIAM J. Comput., vol. 17, No. 4, 1988, pp. 770–785.

    Google Scholar 

  10. R. Cole and U. Vishkin,Approximate and exact scheduling with applications to list, tree and graph problems, Proc. 27th Ann. IEEE Symp. on the Foundations of Computer Science, 1986, pp. 478–491.

  11. L. Devroye,A note on the height of binary search trees, J. ACM, vol. 33, No. 3, 1986, pp. 489–498.

    Google Scholar 

  12. X. He and Y. Yesha,Binary tree algebraic computation and parallel algorithms for simple graphs, J. of Algorithms, vol. 9, 1988, pp. 92–113.

    Google Scholar 

  13. P. Heidelberger, A. Norton and J.T. Robinson,Parallel quicksort using fetch-and-add, IEEE Trans. on Computers, vol. 39, No. 1, 1990, pp. 133–138.

    Google Scholar 

  14. C. P. Kruskal,Algorithms for replace-add based paracomputers, Proc. of Intern. Conf. on Parallel Processing, 1982, pp. 219–223.

  15. C. P. Kruskal, Larry Rudolph and Marc Snir,Efficient parallel algorithms for graph problems, Algorithmica, vol. 5, 1990, pp. 43–65.

    Google Scholar 

  16. C. U. Martel and D. Gusfield,A fast parallel quicksort algorithm, Information Processing Letters, vol. 30, Jan. 1989, pp. 97–102.

    Google Scholar 

  17. A. Moitra and S. S.Iyengar, A maximally parallel balancing algorithm for obtaining complete balanced binary trees, IEEE Trans. on Computers, vol. 34, No. 6, June, 1985, pp. 563–565.

    Google Scholar 

  18. A. Moitra and S. S. Iyengar,Derivation of a maximally parallel algorithm for balancing binary search tree, Dept. of Computer Science, Cornell University, Ithaca, NY, Tech. Rep. 84–638, Sept. 1984.

    Google Scholar 

  19. F. P. Preparata and M. I. Shamos,Computational Geometry — An Introduction, Springer-Verlag, 1989.

  20. U. Vishkin,Implementation of simultaneous memory address access in models that forbid it, J. of Algorithms, vol. 4, 1983, pp. 45–50.

    Google Scholar 

  21. U. Vishkin,Synchronous parallel computation — A survey, Technical Report, No. 71, Dept. of Computer Science, Courant Institute, NYU, 1983.

Download references

Author information

Authors and Affiliations

Authors

Additional information

The work of this author was partially supported by a fellowship from the College of Science, Old Dominion University, Norfolk, VA 23529, USA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., Rao, N.S.V. Optimal parallel quicksort on EREW PRAM. BIT 31, 69–74 (1991). https://doi.org/10.1007/BF01952784

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01952784

CR Categories

Keywords

Navigation