Abstract
In the present paper we shall show that the rank of the finite field\(\mathbb{F}_{q^n }\) regarded as an\(\mathbb{F}_q\)-algebra has one of the two values 2n or 2n+1 ifn satisfies 1/2q+1<n<1/2(m(q)−2). Herem(q) denotes the maximum number of\(\mathbb{F}_q\)-rational points of an algebraic curve of genus 2 over\(\mathbb{F}_q\). Using results of Davenport-Hasse, Honda and Rück we shall give lower bounds form(q) which are close to the Hasse-Weil bound\(q + 1 + 4\sqrt q\). For specialq we shall further show thatm(q) is equal to the Hasse-Weil bound.
Similar content being viewed by others
References
E. Artin:Algebraic Numbers and Algebraic Functions, Gordon and Breach Science Publishers, 1977.
C. Chevalley:Introduction to Algebraic Functions of one Variable, Am. Math. Society, New York, 1958.
D. V. Chudnovsky, G. V. Chudnovsky: Algebraic Complexities and Algebraic Curves over Finite Fields,Proc. Natl. Acad. Sci. USA,84, 1987, 1739–1743.
D. V. Chudnovsky, G. V. Chudnovsky:Algebraic Complexities and Algebraic Curves over Finite Fields, Research Report RC 12065, IBM Research Center, Yorktown Heights, N.Y., 1987.
H. Davenport, H. Hasse: Die Nullstellen der Kongruenzzetafunktion in gewissen zyklischen Fällen,Journal für die reine und angewandte Mathematik,172, 1935, 151–182.
M. Deuring:Lectures on the Theory of Algebraic Functions of One Variable, Lecture Notes in Mathematics314, Springer-Verlag, Heidelberg, New York, Tokyo, 1973.
A. Garcia, P. Viana: Weierstrass Points on certain non-classical Curves,Arch. Math.,46, 1986, 315–322.
H. F. de Groote: Characterization of Division Algebras of Minimal Rank and the Structure of their Algorithm Varieties,SIAM Journal of Computing,12, 1983, 101–117.
H. F. de Groote:Lectures on the Complexity of Bilinear Problems, Lecture Notes in Computer Science,245, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1985.
R. Hartshorne:Algebraic Geometry, Graduate Texts in Mathematics, Springer Verlag, Berlin, Heidelberg, New York, 1977.
H. Hasse:Zahlentheorie, Akademie-Verlag, Berlin, 1969.
T. Honda: On the Jacobian of the Algebraic Curvey 2=1-x l over a Field of Characteristicp>0,Osaka Journal of Mathematics,3, 1966, 189–194.
H. G. Rück: Abelsche Varietäten niederer Dimension über endlichen Körpern,Preprint No. 2, Institut für experimentelle Mathematik, Universität GHS Essen, 1990.
F. K. Schmidt: Analytische Zahlentheorie in Körpern der Charakteristikp, Math. Zeitschrift,33, 1931, 1–32.
J. P. Serre:Linear Representations of Finite Groups, Graduate Texts in Mathematics, Springer-Verlag, New York, Heidelberg, Berlin, 1977.
M. A. Shokrollahi: Optimal Algorithms for Multiplication in certain Finite Fields using Elliptic Curves,Research Report, Universität Bonn (submitted for publication), 1990
J. T. Tate: Endomorphisms of Abelian Varieties over Finite Fields,Invent. Math.,2, 1966, 134–144.
W. C. Waterhouse: Abelian Varieties over Finite Fields,Ann. scient. Ec. Norm. Sup.,4, 1969, 521–560.
A. Weil:Variété abéliennes et courbes algébriques, Hermann, Paris, 1948.
S. Winograd: On Multiplication in Algebraic Extension Fields,Theoretical Computer Science,8, 1979, 359–377.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Shokrollahi, M.A. On the rank of certain finite fields. Comput Complexity 1, 157–181 (1991). https://doi.org/10.1007/BF01272519
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01272519