iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/BF01272519
On the rank of certain finite fields | computational complexity Skip to main content
Log in

On the rank of certain finite fields

  • Published:
computational complexity Aims and scope Submit manuscript

Abstract

In the present paper we shall show that the rank of the finite field\(\mathbb{F}_{q^n }\) regarded as an\(\mathbb{F}_q\)-algebra has one of the two values 2n or 2n+1 ifn satisfies 1/2q+1<n<1/2(m(q)−2). Herem(q) denotes the maximum number of\(\mathbb{F}_q\)-rational points of an algebraic curve of genus 2 over\(\mathbb{F}_q\). Using results of Davenport-Hasse, Honda and Rück we shall give lower bounds form(q) which are close to the Hasse-Weil bound\(q + 1 + 4\sqrt q\). For specialq we shall further show thatm(q) is equal to the Hasse-Weil bound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Artin:Algebraic Numbers and Algebraic Functions, Gordon and Breach Science Publishers, 1977.

  2. C. Chevalley:Introduction to Algebraic Functions of one Variable, Am. Math. Society, New York, 1958.

    Google Scholar 

  3. D. V. Chudnovsky, G. V. Chudnovsky: Algebraic Complexities and Algebraic Curves over Finite Fields,Proc. Natl. Acad. Sci. USA,84, 1987, 1739–1743.

    Google Scholar 

  4. D. V. Chudnovsky, G. V. Chudnovsky:Algebraic Complexities and Algebraic Curves over Finite Fields, Research Report RC 12065, IBM Research Center, Yorktown Heights, N.Y., 1987.

    Google Scholar 

  5. H. Davenport, H. Hasse: Die Nullstellen der Kongruenzzetafunktion in gewissen zyklischen Fällen,Journal für die reine und angewandte Mathematik,172, 1935, 151–182.

    Google Scholar 

  6. M. Deuring:Lectures on the Theory of Algebraic Functions of One Variable, Lecture Notes in Mathematics314, Springer-Verlag, Heidelberg, New York, Tokyo, 1973.

    Google Scholar 

  7. A. Garcia, P. Viana: Weierstrass Points on certain non-classical Curves,Arch. Math.,46, 1986, 315–322.

    Google Scholar 

  8. H. F. de Groote: Characterization of Division Algebras of Minimal Rank and the Structure of their Algorithm Varieties,SIAM Journal of Computing,12, 1983, 101–117.

    Google Scholar 

  9. H. F. de Groote:Lectures on the Complexity of Bilinear Problems, Lecture Notes in Computer Science,245, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1985.

    Google Scholar 

  10. R. Hartshorne:Algebraic Geometry, Graduate Texts in Mathematics, Springer Verlag, Berlin, Heidelberg, New York, 1977.

    Google Scholar 

  11. H. Hasse:Zahlentheorie, Akademie-Verlag, Berlin, 1969.

    Google Scholar 

  12. T. Honda: On the Jacobian of the Algebraic Curvey 2=1-x l over a Field of Characteristicp>0,Osaka Journal of Mathematics,3, 1966, 189–194.

    Google Scholar 

  13. H. G. Rück: Abelsche Varietäten niederer Dimension über endlichen Körpern,Preprint No. 2, Institut für experimentelle Mathematik, Universität GHS Essen, 1990.

    Google Scholar 

  14. F. K. Schmidt: Analytische Zahlentheorie in Körpern der Charakteristikp, Math. Zeitschrift,33, 1931, 1–32.

    Google Scholar 

  15. J. P. Serre:Linear Representations of Finite Groups, Graduate Texts in Mathematics, Springer-Verlag, New York, Heidelberg, Berlin, 1977.

    Google Scholar 

  16. M. A. Shokrollahi: Optimal Algorithms for Multiplication in certain Finite Fields using Elliptic Curves,Research Report, Universität Bonn (submitted for publication), 1990

  17. J. T. Tate: Endomorphisms of Abelian Varieties over Finite Fields,Invent. Math.,2, 1966, 134–144.

    Google Scholar 

  18. W. C. Waterhouse: Abelian Varieties over Finite Fields,Ann. scient. Ec. Norm. Sup.,4, 1969, 521–560.

    Google Scholar 

  19. A. Weil:Variété abéliennes et courbes algébriques, Hermann, Paris, 1948.

    Google Scholar 

  20. S. Winograd: On Multiplication in Algebraic Extension Fields,Theoretical Computer Science,8, 1979, 359–377.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shokrollahi, M.A. On the rank of certain finite fields. Comput Complexity 1, 157–181 (1991). https://doi.org/10.1007/BF01272519

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01272519

Key words

Navigation