iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/BF00984101
Abiotic pollen and pollination: Ecological, functional, and evolutionary perspectives | Plant Systematics and Evolution Skip to main content
Log in

Abiotic pollen and pollination: Ecological, functional, and evolutionary perspectives

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The transport and capture of pollen in ~20% of all angiosperm families occurs in air and water. In other words, pollination is abiotic and occurs via the fluid media, not an animal vector. Whereas some early concepts considered abiotic pollination to be largely a stochastic phenomenon, there is sufficient evidence to indicate that wind pollination (i.e. anemophily) and water pollination (i.e. hydrophily) have deterministic features and are sophisticated fluid dynamic solutions to the problem of pollen release, dispersal, and capture.

An abiotic pollination syndrome is defined in which there is spatial or temporal separation of carpellate and staminate flowers, which are drab, a reduction in perianth parts, stigmas and anthers are exposed to the fluid, and typically unclumped pollen may be produced in large amounts. Separate pollination syndromes are defined for anemophilous (i.e. wind-pollinated), ephydrophilous (i.e. surface-pollinated), and hydrophilous (i.e. submarine-pollinated) plants. Distinctions are based on habitat and physical conditions for pollination, pollen size, shape, and ultrastructure, morphology and ultrastructure of stigmas, and outcrossing rates. For example, anemophilous pollen are spherical and small, ephydrophilous pollen are spherical or reniform and large, while hydrophilous pollen are filiform (i.e. filamentous) or functionally filiform. The pollination mechanisms and mechanics associated with these syndromes reveals a strong evolutionary relationship between plant morphology and fluid dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackerman J. D. (1989) Biomechanical aspects of submarine pollination inZostera marina L. Doctoral Dissertation. Cornell University, Ithaca.

    Google Scholar 

  • Ackerman J. D. (1993) Pollen germination and pollen tube growth in the marine angiosperm,Zostera marina L. Aquat. Bot. 46: 189–202.

    Google Scholar 

  • Ackerman J. D. (1995) Convergence of filiform pollen morphologies in seagrasses: Functional mechanisms. Evol. Ecol. 9: 139–153.

    Google Scholar 

  • Ackerman J. D. (1997a) Submarine pollination in the marine angiosperm,Zostera marina: Part I. The influence of floral morphology on fluid flow. Amer. J. Bot. 84: 1099–1109.

    Google Scholar 

  • Ackerman J. D. (1997b) Submarine pollination in the marine angiosperm,Zostera marina: Part II. Pollen transport in flow fields and capture by stigmas. Amer. J. Bot. 84: 1110–1119.

    Google Scholar 

  • Ackerman J. D. (1998) Is the limited diversity of higher plants in marine systems due to biophysical limitations for reproduction or evolutionary and physiological constraints? Funct. Ecol. 12: 979–982.

    Google Scholar 

  • Ackerman J. D., Okubo A. (1993) Reduced mixing in a marine macrophyte canopy. Funct. Ecol. 7: 305–309.

    Google Scholar 

  • Arber A. (1920) Water Plants, A Study of Aquatic Angiosperms. Cambridge University Press, Cambridge.

    Google Scholar 

  • Balfour B. (1879) On the genusHalophila. Trans. Bot. Soc. Edin. 13: 290–343 (+5 plates).

    Google Scholar 

  • Barrett S. C. H., Eckert C. G. (1990) Variation and evolution of mating systems in seed plants. In: Kawano S. (ed.) Biological Approaches and Evolutionary Trend in Plants. Academic Press, New York, pp. 229–254.

    Google Scholar 

  • Berry P. E., Calvo R. N. (1989) Wind pollination, self-incompatibility, and altitudinal shifts in pollination systems in the high Andean genusEspeletia (Asteraceae). Amer. J. Bot. 76: 1602–1614.

    Google Scholar 

  • Bornet D. M. (1864) Recherches sur lePhucagrostis major Cavol. Ann. Sci. Nat. Bot (Sr. 5) 1: 5–51 (+11 plates).

    Google Scholar 

  • Bowman H. H. M. (1922) The distribution and pollination of certain sea-grasses. Mich. Acad. Sci. Papers 22: 3–10 (+4 plates).

    Google Scholar 

  • Buchmann S. L., O'Rourke M. K., Niklas K. J. (1989) Aerodynamic ofEphedra trifurca. III Selective pollen capture by pollination droplets. Bot. Gaz. 150: 122–131.

    Google Scholar 

  • Bullock S. H. (1994) Wind pollination of neotropical deciduous trees. Biotropica 26: 172–179.

    Google Scholar 

  • Burd M. (1994) Bateman's principle and plant reproduction: The role of pollen limitation in fruit and seed set. Bot. Rev. 60: 83–139.

    Google Scholar 

  • Charlesworth D. (1993) Why are unisexual flowers associated with wind pollination and unspecialized pollinators? Am. Nat. 141: 481–490.

    Google Scholar 

  • Corbet S. A., Beament L., Eisikowitch D. (1982) Are electrostatic forces involved in pollen transfer? Plant Cell Environ. 5: 125–129.

    Google Scholar 

  • Cook C. D. K. (1982) Pollination mechanisms in the Hydrocharitaceae. In: Symoens J. J., Hooper S. S., Compère P. (eds.) Studies on Aquatic Vascular Plants. Royal Botanical Society of Belgium, Brussels, pp. 1–15.

    Google Scholar 

  • Cook C. D. K. (1988) Wind pollination in aquatic angiosperms. Ann. Missouri Bot. Gard. 75: 768–777.

    Google Scholar 

  • Cook C. D. K. (1996) The Aquatic Plant Book. SPB Academic Publishing, New York.

    Google Scholar 

  • Cox P. A. (1988) Hydrophilous pollination. Ann. Rev. Ecol. Syst. 19: 261–280.

    Google Scholar 

  • Cox P. A. (1991) Abiotic pollination: An evolutionary escape for animal pollinated angiosperms. Phil. Trans. R. Soc. Lond. B 333: 217–224.

    Google Scholar 

  • Crane P. R. (1986) Form and function in wind dispersed pollen. In: Blackmore S., Ferguson I. K. (eds.) Pollen and Spores: Form and Function. Academic, London, pp. 179–202.

    Google Scholar 

  • Cronquist A. (1988) The Evolution and Classification of Flowering Plants. 2nd edn. New York Botanical Gardens, New York.

    Google Scholar 

  • Cruden R. W. (2000) Pollen grains: why so many? In: Dafni A., Pacini E., Hesse M. (ed) Pollen and Pollination. Springer, Berlin, pp. 143–165.

    Google Scholar 

  • Dafni A., Dukas R. (1986) Insect and wind pollination inUrginea martima (Liliaceae). Plant Syst. Evol. 154: 1–10.

    Google Scholar 

  • Dafni A., Firmage D. (2000) Pollen longevity: Practical, ecological and evolutionary implications. In: Dafni A., Pacini E., Hesse M. (eds.) Pollen and Pollination. Springer, Berlin, pp. 113–132.

    Google Scholar 

  • DeCock A. W. A. M. (1980) Flowering, pollination and fruiting inZostera marina L. Aquat. Bot. 9: 201–220.

    Google Scholar 

  • Delpino F., Ascherson P. (1871) Federico Delpino's Eintheilung der Pflanzen nach dem Mechanismus der dichogamischen Befruchtung und Bemerkungen über die Befruchtungs-Vorgänge bei Wasserpflanzen (Aus dessen, Ulteriori osservazioni sulla dicogamia nel regno vegetabile Part II. Fasc. I. [Atti della soc. ital. di sc. nat. XIII, 1870] migetheilt und mit einigen Zusätzen versehen von P. Ascherson. Bot. Zeit. 29: 443–5, 447–59, 463–7.

    Google Scholar 

  • den Hartog C. (1970) The Sea-Grasses of the World. North Holland Publishing, Amsterdam.

    Google Scholar 

  • Diez M. J., Talavera S., Garcia-Murillo P. (1988) Contributions to the palynology of hydrophytic, non-entomophilous angiosperms. 1. Studies with LM and SEM. Candollea 43: 147–158.

    Google Scholar 

  • Ducker S. C., Knox R. B. (1976) Submarine pollination in seagrasses. Nature 263: 705–706.

    Google Scholar 

  • Ducker S. C., Pettitt J. M., Knox R. B. (1978) Biology of Australian seagrasses: Pollen development and submarine pollination inAmphibolis antarctica andThalassodendron ciliatum (Cymodoceaceae). Aus. J. Bot. 26: 265–85.

    Google Scholar 

  • Dudley W. R. (1893) The genusPhyllospadix. In The Wilder Quarter-Century Book. Comstock Press, Ithaca, pp. 403–420 + 2 plates.

    Google Scholar 

  • Erickson E. H., Buchmann S. L. (1983) Electrostatics and pollination. In: Jones C. E., Little R. J. (eds.) Handbook of Experimental Pollination Biology. Van Nostrand Reinhold, New York.

    Google Scholar 

  • Esau K. (1977) Anatomy of Seed Plants. 2nd edn. J. Wiley and Sons, New York.

    Google Scholar 

  • Faegri K., van der Pijl L. (1979) The Principles of Pollination Ecology, 3rd edn. Pergamon, Oxford.

    Google Scholar 

  • Forgacs O. L., Mason S. G. (1958) The flexibility of wood-pulp fibers. TAPPI 41: 695–704.

    Google Scholar 

  • Gan-Mor S., Schwartz Y., Bechar A., Eisikowitch D., Manor G. (1995) Relevance of electrostatic forces in natural and artificial pollination. Can. Agricult. Engin. 37: 189–194.

    Google Scholar 

  • Gomez J. M., Zamora R. (1996) Wind pollination in high-mountain populations ofHormathophylla spinosa (Cruciferae). Amer. J. Bot. 83: 580–585.

    Google Scholar 

  • Goodwillie C. (1999) Wind pollination and reproductive assurance inLinanthus parviflora (Polemoniaceae), a self-incompatible annual. Amer. J. Bot. 86: 948–954.

    Google Scholar 

  • Grace J. B. (1993) The adaptive significance of clonal reproduction in angiosperms: an aquatic perspective. Aquat. Bot. 44: 159–180.

    Google Scholar 

  • Guo Y. H., Sperry R., Cook C. D. K., Cox P. A. (1990) The pollination ecology ofZannichelia palustris L. (Zannicheliaceae). Aquat. Bot. 38: 29–45.

    Google Scholar 

  • Hamrick J. L., Godt M. J. W., Sherman-Broyles S. L. (1995) Gene flow among plant populations: Evidence from genetic markers. In: Hoch P. G., Stevenson A. G. (eds.) Experimental and Molecular Approaches to Plant Biosystematics. Missouri Botanical Garden, St. Louis, pp. 215–232.

    Google Scholar 

  • Harder L. D. (1998) Pollen-size comparisons among animal-pollinated angiosperms with different pollination characteristics. Biol. J. Linnean Soc. 64: 513–525.

    Google Scholar 

  • Haynes R. R. (1988) Reproductive biology of selected aquatic plants. Ann. Missouri Bot. Gard. 75: 805–810.

    Google Scholar 

  • Honig M. A., Linder H. P., Bond W. J. (1992) Efficacy of wind pollination: Pollen load size and natural microgametophyte populations in windpollinatedStaberoha banksii. Amer. J. Bot. 79: 443–448.

    Google Scholar 

  • Iwanami Y., Sasakuma T., Yamada Y. (1988) Pollen: Illustrations and Scanning Electronmicrographs. Springer, Berlin.

    Google Scholar 

  • Kausik S. B., Rao P. K. V. (1942) The male gametophyte ofHalophila ovata Gaudich. Halfyrly J. Mys. Univ. 3: 41–49.

    Google Scholar 

  • Knuth P. (1906) Handbook of Flower Pollination, Based Upon Hermann Müller's Work ‘Fertilisation of Flowers by Insects’. Volume I: Introduction and Literature. Translated by J. R. Ainsworth Davis. Oxford University Press, London.

    Google Scholar 

  • Koopman B. O. (1956) The theory of search: II Target detection. Oper. Res. 4: 503–531.

    Google Scholar 

  • Lacroix C. R., Kemp J. R. (1997) Developmental morphology of the androecium ad gynoecium inRuppia maritima L.: Considerations for pollination. Aquat. Bot. 59: 253–262.

    Google Scholar 

  • Les D. H. (1988) Breeding systems, population structure, and evolution in hydrophilous angiosperms. Ann. Missouri Bot. Gard. 75: 819–835.

    Google Scholar 

  • Les D. H., Cleland M. A., Waycott M. (1997) Phylogenetic studies in the Alismatidae, II: Evolution of marine angiosperms (seagrasses) and hydrophily. Syst. Bot. 22: 443–463.

    Google Scholar 

  • Linder H. P., Midgley J. (1996) Anemophilous plants select pollen from their own species from the air. Oecologia 108: 85–87.

    Google Scholar 

  • Listabarth C. (1992) Insect-induced wind pollination in the palmChamaedorea pinnatifrons and pollination in the relatedWeldlandiella. Biodiv. Conserv. 1: 39–50.

    Google Scholar 

  • Mahabale T. S. (1968) Spores and pollen grains of water plants and their dispersal. Rev. Palaeobot. Palynol. 7: 285–296.

    Google Scholar 

  • Martinsson K. (1993) The pollen of SwedishCallitriche (Callitricaceae) — trends towards submergence. Grana 32: 198–193.

    Google Scholar 

  • Midgley J. J., Bond W. J. (1991a) How important is biotic pollination and dispersal to the success of the angiosperms? Phil. Trans. R. Soc. Lond. B 333: 209–215.

    Google Scholar 

  • Midgley J. J., Bond W. J. (1991b) Ecological aspects of the rise of angiosperms: A challenge to the reproductive superiority hypothesis. Biol. J. Linn. Aoc. 44: 8–92.

    Google Scholar 

  • Nicholls M. S., Cook C. D. K. (1986) The function of pollen tetrads inTypha (Typhaphaceae). Verhoff. Geobot. Inst. Zurich 87: 112–119.

    Google Scholar 

  • Niklas K. J. (1985) The aerodynamics of wind pollination. Bot. Rev. 51: 328–386.

    Google Scholar 

  • Niklas K. J. (1992) Plant Biomechanics. University of Chicago Press, Chicago.

    Google Scholar 

  • Niklas K. J. (1997) The Evolutionary Biology of Plants. University of Chicago Press, Chicago.

    Google Scholar 

  • Niklas K. J., Buchmann S. (1987) The aerodynamics of pollen capture in two sympatricEphedra species. Evol. 41: 104–123.

    Google Scholar 

  • Niklas K. J., Buchmann S. (1988) Aerobiology and pollen capture in orchard-grownPistacia vera (Anacardiaceae). Amer. J. Bot. 75: 1813–1829.

    Google Scholar 

  • Niklas K. J., Paw U. K. T. (1983) Conifer ovulate cone morphology: Implications on pollen impaction patterns. Amer. J. Bot. 70: 568–577.

    Google Scholar 

  • Nixon S. W. (1988) Physical energy inputs and the comparative ecology of lake and marine ecosystems. Limnol. Oceanogr. 33: 1005–1025.

    Google Scholar 

  • Norstog K. J., Stevenson D. W., Niklas K. J. (1986) The role of beetles in the pollination ofZamia furfuracea L. fil. (Zamiaceae). Biotropica 18: 300–306.

    Google Scholar 

  • Osborne J. M., Philbrick C. T. (1994) Comparative pollen structure and pollination biology in the Callitrichaceae. Acta. Bot. Gallica 141: 257–266.

    Google Scholar 

  • Pascasio J. F., Santos J. K. (1930) A critical morphological study ofThalassia hemprichii (Ehrenb.) Aschers. from the Philippines. Nat. Appl. Sci. Bull. Univ. Philipp. 1: 1–19.

    Google Scholar 

  • Payne W. W. (1981) Structure and function in angiosperm pollen wall evolution. Rev. Palaeobot. Palynol. 35: 35–59.

    Google Scholar 

  • Perveen A., Qaiser M. (1996) Pollen flora of Pakistan — V. Haloragaceae. Pak. J. Bot. 28: 21–24.

    Google Scholar 

  • Pettitt J. M. (1976) Pollen wall and stigma surface in the marine angiospermsThalassia andThalassodendron. Micron 7: 21–32.

    Google Scholar 

  • Pettitt J. M. (1981) Reproduction in seagrasses: Pollen development inThalassia hemprichii, Halophila stipulacea, andThalassodendron ciliatum. Ann. Bot. 48: 609–622.

    Google Scholar 

  • Pettitt J. M. (1984) Aspects of flowering and pollination in marine angiosperms. Oceanogr. Mar. Biol. Ann. Rev. 22: 315–342.

    Google Scholar 

  • Pettitt J., Ducker S., Knox B. (1981) Submarine pollination. Sci. Amer. 244: 131–143.

    Google Scholar 

  • Pettitt J. M., Ducker S. C., Knox R. B. (1978)Amphibolis has no exine. Helobiae Newsletter 2: 19–21.

    Google Scholar 

  • Pettitt J. M., Jermy A. C. (1975) Pollen in hydrophilous angiosperms. Micron 5: 377–405.

    Google Scholar 

  • Philbrick C. T. (1984) Pollen tube growth within vegetative tissues ofCallitriche (Callitrichaceae). Amer. J. Bot. 71: 882–886.

    Google Scholar 

  • Philbrick C. T., Anderson G. J. (1987) Implications of pollen/ovule ratios and pollen size for the reproductive biology ofPotamogeton and autogamy in aquatic angiosperms. Syst. Bot. 12: 98–105.

    Google Scholar 

  • Philbrick C. T., Bernardello L. M. (1992) Taxonomic and geographic distribution of internal geitonogamy in new worldCallitriche (Callitrichaceae). Amer. J. Bot. 79: 887–890.

    Google Scholar 

  • Philbrick C. T., Retana A. N. (1998) Flowering phenology, pollen flow, and seed production inMarathrum rubrum (Podostemaceae). Aquat. Bot. 62: 199–206.

    Google Scholar 

  • Proctor M., Yeo P., Lack A. (1996) Natural History of Pollination. Timber Press, Portland.

    Google Scholar 

  • Raven P. H., Evert R. F., Eichhorn S. E. (1999) Biology of Plants. 6th edn. W. H. Freeman and Company, New York.

    Google Scholar 

  • Regal P. J. (1982) Pollination by wind and animals: Ecology and geographic patterns. Ann. Rev. Ecol. Syst. 13: 497–524.

    Google Scholar 

  • Renner S. S., Ricklefs R. E. (1995) Dioecy and its correlates in the flowering plants. Amer. J. Bot. 82: 596–606.

    Google Scholar 

  • Rosenberg O. (1901) Ueber die Pollenbildung vonZostera. Meddh. Stockh. Högskolas. Bot. Inst. 4: 3–21.

    Google Scholar 

  • Ruckleshaus M. H. (1995) Estimation of outcrossing rates and of inbreeding depression in a population of the marine angiosperm,Zostera marina. Mar. Biol. 123: 583–593.

    Google Scholar 

  • Runions C. J., Rensing K. H., Takaso T., Owens J. N. (1999) Pollination ofPicea orientalis (Pinaceae): Saccus morphology governs pollen buoyancy. Amer. J. Bot. 86: 190–197.

    Google Scholar 

  • Schemske D. W., Lande R. (1985) The evolution of self-fertilization and inbreeding depression in plants. II Empirical observations. Evol. 39: 41–52.

    Google Scholar 

  • Schoen D. J., Stewart S. S. (1986) Variation in male reproductive investment and male reproductive success in white spruce. Evol. 40: 1109–1120.

    Google Scholar 

  • Sculthorpe C. D. (1967) The Biology of Aquatic Vascular Plants. Edward Arnold, London.

    Google Scholar 

  • Smith J. P. (1977) Vascular Plant Families. Mad River Press, Eureka.

    Google Scholar 

  • Stelleman P. (1984) Reflections on the transition from wind pollination to ambophily. Acta. Bot. Neerl. 33: 497–508.

    Google Scholar 

  • Stewart J. G., Rüdenberg L. (1980) Microsporocyte growth and meiosis inPhyllospadix torreyi, a marine monocotyledon. Amer. J. Bot. 67: 949–954.

    Google Scholar 

  • Sullivan G., Titus J. E. (1996) Physical site characteristics limit pollination and fruit set in the dioecious hydrophilous species,Vallisneria americana. Oecologia 108: 285–292.

    Google Scholar 

  • Svedelius N. (1932) On the different types of pollination inVallisneria spiralis L. andVallisneria americana Michx. Svensk Bot. Tidskrift 26: 1–12.

    Google Scholar 

  • Thanikaimoni G. (1986) Pollen apertures: form and function. In: Blackmore S., Ferguson I. K. (eds.) Pollen and Spores: Form and Function. Academic, London, pp. 119–136.

    Google Scholar 

  • Thorne R. F. (1992) Classification and geography of the flowering plants. Bot. Rev. 58: 225–348.

    Google Scholar 

  • Tomlinson P. B. (1982) Anatomy of the Monocotyledon: VII Helobiae (Alismatidae). Oxford University Press, New York.

    Google Scholar 

  • Tomlinson P. B. (1994) Functional morphology of saccate pollen in conifers with special reference to Podocarpaceae. Int. J. Plant. Sci. 155: 699–715.

    Google Scholar 

  • Vaknin Y., Gan-mor S., Bechar A., Ronen B., Eisikowitch D. (2000) The role of electrostatics forces in pollination. In: Dafni A., Pacini E., Hesse M. (eds.) Pollen and Pollination. Springer, Berlin, pp. 133–142.

    Google Scholar 

  • Verduin J. J. (1996)In situ submarine pollination in the seagrassAmphibolis antartica (Labill.) Sonderet Aschers.ex Aschers. And its relations to hydrodynamics. In: Kuo J., Phillips R. C., Walker D. I., Kirkman H. (eds.) Seagrass Biology: Proceedings of an International Workshop. University of Western Australia, Nedlands, pp. 123–128.

    Google Scholar 

  • Verduin J. J., Walker D. I., Kuo J. (1996)In situ submarine pollination in the seagrassAmphibolis antartica: Research notes. Mar. Ecol. Progr. Ser. 133: 307–309.

    Google Scholar 

  • Vidakovic M. (1991) Conifers: Morphology and Variation. Graficki Zavod Hrvatske, Croatia.

    Google Scholar 

  • Vogel S. (1994) Life in Moving Fluids, 2nd edn. Princeton University Press, Princeton.

    Google Scholar 

  • Vroege P. W., Stelleman P. (1990) Insect and wind pollination inSalix repens L. andSalix caprea L. Israel J. Bot. 39: 125–132.

    Google Scholar 

  • Waycott M., Sampson J. F. (1997) The mating system of an hydrophilous angiospermPosidonia australis (Posidoniaceae). Amer. J. Bot. 84: 621–665.

    Google Scholar 

  • Whitehead D. R. (1983) Wind Pollination: Some ecological and evolutionary perspectives. In: Real L. (ed.) Pollination Biology. Academic, New York, pp. 97–108.

    Google Scholar 

  • Yamashita T. (1976) Über die Pollenbildung beiHalodule pinifolia undH. uninervis. Beitr. Biol. Pflanzen 52: 217–226.

    Google Scholar 

  • Zomlefer W. B. (1994) Guide to Flowering Plant Families. University of North Carolina Press, Chapel Hill.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ackerman, J.D. Abiotic pollen and pollination: Ecological, functional, and evolutionary perspectives. Pl Syst Evol 222, 167–185 (2000). https://doi.org/10.1007/BF00984101

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00984101

Key words

Navigation