iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/BF00126140
The Gaussian scale-space paradigm and the multiscale local jet | International Journal of Computer Vision Skip to main content
Log in

The Gaussian scale-space paradigm and the multiscale local jet

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

A representation of local image structure is proposed which takes into account both the image's spatial structure at a given location, as well as its “deep structure”, that is, its local behaviour as a function of scale or resolution (scale-space). This is of interest for several low-level image tasks. The proposed basis of scale-space, for example, enables a precise local study of interactions of neighbouring image intensities in the course of the blurring process. It also provides an extrapolation scheme for local image data, obtained at a given spatial location and resolution, to a finite scale-space neighbourhood. This is especially useful for the determination of sampling rates and for interpolation algorithms in a multilocal context. Another, particularly straightforward application is image enhancement or deblurring, which is an instance of data extrapolation in the high-resolution direction.

A potentially interesting feature of the proposed local image parametrisation is that it captures a trade-off between spatial and scale extrapolations from a given interior point that do not exceed a given tolerance. This (rade-off suggests the possibility of a fairly coarse scale sampling at the expense of a dense spatial sampling large relative spatial overlap of scale-space kernels).

The central concept developed in this paper is an equivalence class called the multiscale local jet, which is a hierarchical, local characterisation of the image in a full scale-space neighbourhood. For this local jet, a basis of fundamental polynomials is constructed that captures the scale-space paradigm at the local level up to any given order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Babaud, J., Witkin, A. P., Baudin, M. and Duda, R. O. 1986. Uniqueness of the gaussian kernel for scale-space filtering. IEEE Trans. Pattern Analysis and Machine Intelligence, 8(1):26–33.

    Google Scholar 

  • Barrett, H. H. 1992. Image reconstruction and the solution of inverse problems in medical imaging. In Todd-Pokropek, A. E. and Viergever, M. A., editors, Medical Images: Formation, Hadling and Evaluation, NATO ASI Series F98, Springer Verlag, Berlin, pp. 3–42.

    Google Scholar 

  • Blom, J., terHaar Romeny, B. M., Bel, A. and Koenderink, J. J. 1993. Spatial derivatives and the propagation of noise in gaussian scale-space. J. of Vis. Comm. and Im. Repr. 4(1):1–13.

    Google Scholar 

  • Damon, J. 1990. Local Morse theory for solutions to the heat equation and Gaussian blurring. Internal report, Department of Mathematics, University of North Carolina, Chapel Hill, North Carolina, USA.

    Google Scholar 

  • Florack, L. M. J., terHaar Romeny, B. M., Koenderink, J. J. and Viergever, M. A., 1992. Scale and the differential structure of images. Image and Vision Computing, 10(6):376–388.

    Google Scholar 

  • Florack, L. M. J., terHaar Romeny, B. M., Koenderink, J. J. and Viergever, M. A. 1993. Cartesian differential invariants in scale-space. Journal of Mathematical Imaging and Vision, 3(4):327–348.

    Google Scholar 

  • Florack, L. M. J., terHaar Romeny, B. M., Koenderink, J. J. and Viergever, M. A. 1994. Linear scale-space. Journal of Mathematical Imaging and Vision, 4(4):325–351.

    Google Scholar 

  • Hummel, R. A., Kimia, B. B. and Zucker, S. W. 1987. Deblurring gaussian blur. Computer Vision, Graphics, and Image Processing, 38:66–80.

    Google Scholar 

  • Johansen, P., Skelboe, S., Grue, K. and Andersen, J. D. 1986. Representing signals by their top points in scale-space. In Proceedings of the 8-th International Conference on Pattern Recognition, Paris, pp. 215–217.

  • Kay, D. C. 1988. Tensor Calculus. Schaum's Outline Series. McGraw-Hill Book Company, New York.

    Google Scholar 

  • Kimia, B. B. and Zucker, S. W. 1993. Analytic inverse of discrete Gaussian blue. Optical Engineering, 32(1):166–176.

    Google Scholar 

  • Koenderink, J. J. 1984a. The concept of local sign In vanDoorn, A. J., van deGrind, W. A. and Koenderink, J. J., editors, Limits in Perception. VNU Science Press, Utrecht, pp. 495–547.

    Google Scholar 

  • Koenderink, J. J. 1984b. The structure of images. Biol. Cybern., 50:363–370.

    Google Scholar 

  • Koenderink, J. J. 1992. Local image structure. In Johansen, P., and Olsen, S., editors, Theory & Applications of Image Analysis, volume 2 of Series in Machine Perception and Artificial Intelligence, World Scientific, Singapore, pp. 15–21.

    Google Scholar 

  • Koenderink, J. J. and vanDoorn, A. J. 1986. Dynamic shape. Biol. Cybern., 53:383–396.

    Google Scholar 

  • Koenderink, J. J. and vanDoorn, A. J. 1987. Representation of local geometry in the visual system. Biol. Cybern., 55:367–375.

    Google Scholar 

  • Koenderink, J. J. and vanDoorn, A. J. 1990. Receptive field families. Biol. Cybern., 63:291–298.

    Google Scholar 

  • Koenderink, J. J. 1990. The brain a geometry engine. Psychological Research, 52:122–127.

    Google Scholar 

  • Lawden, D. F. 1962. An Introduction to Tensor Calculus and Relativity. Spottiswoode Ballantyne & Co Ltd.

  • Lindeberg, T. 1990. Scale-space for discrete signals. IEEE Trans. Pattern Analysis and Machine Intelligence, 12(3):234–245.

    Google Scholar 

  • Lindeberg, T. and Eklundh, J. O. 1990. On the computation of a scale-space primal sketch. J. of Vis. Comm. and Im. Repr., 2(1):55–78.

    Google Scholar 

  • Lindeberg, T. 1992a. On the behaviour in scale-space of local extrema and blobs. In Johansen, P., and Olsen, S., editors, Theory & Applications of Image Analysis, volume 2 of Series in Machine Perception and Artificial Intelligence, World Scientific, Singapore, pp. 38–47.

    Google Scholar 

  • Lindeberg, T. 1992b. Scale-space behaviour of local extrema and blobs. Journal of Mathematical Imaging and Vision, 1(1):65–99.

    Google Scholar 

  • Lipschutz, M. M. 1969. Differential Geometry. Schaum's Outline Series. McGraw Hill, New York.

    Google Scholar 

  • Lotze, H. 1884. Mikrokosmos. Hirzel, Leipzig.

    Google Scholar 

  • Salden, A. H., terHaar Romeny, B. M. and Viergever, M. A. 1994. Local and multilocal scale-space description. In O, Y.-L., Toet, A., Heijmans, H. J. A. M., Foster, D. H. and Meer, P., editors, Proc. of the NATO Advanced Research Workshop Shape in Picture-Mathematical Description of Shape in Greylevel Images, NATO ASI Series F126, Springer Verlag, Berlin.

    Google Scholar 

  • Schwartz, L. 1950–1951. Theorie des Distributions, volume I, II of Actualités scientifiques et industrielles; 1091, 1122. Publications de l'Institut de Mathématique de l'Université de Strasbourg, Paris.

    Google Scholar 

  • Spivak, M. 1970–1975. A Comprehensive Introduction to Differential Geometry, volume I–V. Publish or Perish, Inc., Houston, Texas.

    Google Scholar 

  • Ter Haar Romeny, B. M., Florack, L. M. J., de Swart, M., Wilting, J. J. and Viergever, M. A. 1994. Deblurring Gaussian blur. In Proc. Mathematical Methods in Medical Imaging II, volume 2299, San Diego, CA, pp. 25–26.

  • Wang, D. C. C., Vagnucci, A. H. and Li, C. C. 1983. Digital image enhancement: A survey. Computer Vision, Graphics, and Image Processing, 24:363–381.

    Google Scholar 

  • Witkin, A. P. 1983. Scale space filtering. In Proc. International Joint Conference on Artificial Intelligence, Karlsruhe, W. Germany, pp. 1019–1023.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Florack, L., Ter Haar Romeny, B., Viergever, M. et al. The Gaussian scale-space paradigm and the multiscale local jet. Int J Comput Vision 18, 61–75 (1996). https://doi.org/10.1007/BF00126140

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00126140

Keywords

Navigation