iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/BF00005906
Ecomorphological correlates in ten species of subtropical seagrass fishes: diet and microhabitat utilization | Environmental Biology of Fishes Skip to main content
Log in

Ecomorphological correlates in ten species of subtropical seagrass fishes: diet and microhabitat utilization

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Synopsis

Ecomorphological correlates were sought among ten species of distantly related subtropical seagrass fishes. Morphometric data associated with feeding and microhabitat utilization were compared by principal components analysis, cluster analysis, and canonical correspondence analysis to dietary data. Morphology was generally a poor predictor of diet except for a group of mid-water planktotrophic filter feeders. Separation of the species along morphological axes appears to be related more to microhabitat utilization resulting in three major groups: (1) a group of planktotrophic, mid-water fishes specialized for cruising and seeking out evasive prey characterized by a compressed fusiform body, forked caudal fin, long, closely spaced gill rakers, short to intermediate! length pectoral fin, pointed pectoral fin, large lateral eye, short head, and a terminal or subterminal mouth; (2) slow swimming, less maneuverable epibenthic fishes that pick or suck their prey off the substrate. They are united by more rounded caudal and pectoral fins, and short or no gill rakers; and (3) a group of more mobile and maneuverable epibenthic foragers characterized by a more compressed, sub-gibbose body, long, pointed pectoral fins, forked caudal fins, large lateral eyes, subterminal mouth, and greater jaw protrusibility. Cases of convergence in trophic and microhabitat utilization characters were apparent in some of the groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Aleev, Y.G. 1969. Function and gross morphology in fish. Akad. Sci. USSR, Sevastopol Biol. Stn., Israel Program for Sci. Transl., Jerusalem. 268 pp.

  • Alexander, R.McN. 1974. Functional design in fishes. Hutchinson University Library, London. 160 pp.

    Google Scholar 

  • Atchley, W.R., C.T. Gaskins & D. Anderson. 1976. Statistical properties of ratios. I. Empirical results. Syst. Zool. 25: 137–148.

    Google Scholar 

  • Block, W.M., L.A. Brennan & R.J. Gutierrez. 1991. Ecomorphological relationships of a guild of ground-foraging birds in northern California, USA. Oecologia 87: 449–458.

    Google Scholar 

  • Brook, I.M. 1977 Trophic relationships in a seagrass community (Thalassia testudinum), in Card Sound, Florida. Fish diets in relation to macrobenthic and cryptic faunal abundance. Trans. Amer. Fish. Soc. 106: 219–229.

    Google Scholar 

  • Carr, W.F.S. & C.A. Adams. 1973. Food habits of juvenile marine fishes occupying seagrass beds in the estuarine zone near Crystal River, Florida. Trans. Amer. Fish. Soc. 102: 511–540.

    Google Scholar 

  • Chao, L.N. & J.A. Musick. 1977. Life history, feeding habits, and functional morphology of juvenile sciaenid fishes in the York River Estuary, Virginia. U.S. Fish. Bull. 75: 657–702.

    Google Scholar 

  • Comp, G.S. 1985. A survey of the distribution and migration of the fishes in Tampa Bay. pp. 393–425 In: S.F. Treat, J.L. Simon, R.R. Lewis & R.L. Whitman,Jr(eds) Tampa basis. Bay Area Scientific Information Symposium, Bellwether Press, Edina.

    Google Scholar 

  • Comp, G.S. & W. Seaman,Jr. 1985. Estuarine habitat and fishery resources of Florida. pp. 337–435. In: W. Seaman(ed) Florida Aquatic Habitat and Fishery Resources, American Fisheries Society, Eustis.

    Google Scholar 

  • Cyrus, D.P. & S.J.M. Blaber. 1982. Mouthpart structure and function and the feeding mechanisms of Gerres (Teleostei). S. Aft. J. Zool. 17: 117–121.

    Google Scholar 

  • Davis, W.P. & R.S. Birdsong. 1973. Coral reef fishes which forage in the water column. Helgol. wiss. Meeresunters. 24: 292–306.

    Google Scholar 

  • Darnell, R.M. 1958. Food habits of fishes and larger invertebrates of Lake Pontchartrain, Louisiana, an estuarine community. Publ. Inst. Mar. Sci. Univ. Tex. 5: 353–416.

    Google Scholar 

  • Douglas, M.F. 1987. An ecomorphological analysis of niche packing and niche dispersion in stream-fish clades. pp. 144–149. In: W.S. Mathews & D.C. Heins(eds.) Community and Evolutionary Ecology of North American Stream Fishes, University of Oklahoma Press, Norman.

    Google Scholar 

  • Ehlinger, T.J. 1990. Habitat choice and phenotype-limited feeding efficiency in bluegill: individual differences and trophic polymorphism. Ecology 71: 886–896.

    Google Scholar 

  • Ehlinger, T.J. & M.R. Gross. 1992. Ecomorphology of alternative male reproductive strategies. 72nd Ann. Meeting Amer. Soc. Ichthyol. Herp., University of Illinois, Champaign-Urbana (abstract).

    Google Scholar 

  • Ehlinger, T.J. & D.S. Wilson. 1988. Complex foraging polymorphism in bluegill sunfish. Proc. Natl. Acad. Sci. 85: 1878–1882.

    Google Scholar 

  • Felley, J.D. 1984. Multivariate identification of morphological-environmental relationships within the cyprinidae (Pisces). Copeia 1984: 442–455.

  • Felsenstein, J. 1985. Phylogenies and the comparative method. Amer. Nat. 125: 1–15.

    Google Scholar 

  • Findley, J.S. & H. Black. 1983. Morphological and dietary structuring of a Zambian insectivorous bat community. Ecology 64: 625–630.

    Google Scholar 

  • Galis, F. 1993. Interactions between the pharyngeal jaw apparatus, feeding behavior and ontogeny in the cichlid fish, Haplochromis piceatus. A study of morphological constraints in evolutionary ecology. J. Exp. Zool. 267: 137–154.

    Google Scholar 

  • Gatz, A.J.Jr. 1979a. Ecological morphology of freshwater stream fishes. Tulane Studies in Zoology and Botany 21: 91–124.

    Google Scholar 

  • Gatz, A.J. Jr. 1979b. Community organization in fishes as indicated by morphological features. Ecology 60: 711–718.

    Google Scholar 

  • Goldschmid, A., K. Kotrschal & P. Wirtz. 1984. Food and gut length of 14 Adriatic bleniid fish Bleniidae; Percomorpha; Teleostei). Zool. Anz. 213: 145–150.

    Google Scholar 

  • Grossman, G.D. 1986. Food resource partitioning in a rocky intertidal fish assemblage. J. Zool. Lond. 1: 317–355.

    Google Scholar 

  • Hansen, D.J. 1969. Food, growth, migration, and abundance of pinfish Lagodon rhomboides, and Atlantic croaker, Micropogon undulates, near Pensacola, Flor. U.S. Fish. Wildl. Serv., Fish. Bull. 68: 135–146.

    Google Scholar 

  • Hill, M.O. 1973. Diversity and evenness: an unifying notation and its consequences. Ecology 54: 427–432.

    Google Scholar 

  • Huey, R.B. & A.F. Bennett. 1986. A comparative approach to field and laboratory studies in evolutionary biology. pp. 82–98. In: M.E. Feder & G.V. Lauder(eds) Predator-Prey Relationships: Perspectives and Approaches from the Study of Lower Vertebrates. University of Chicago Press, Chicago.

    Google Scholar 

  • Huh, S.H. & C.L. Kitting. 1985. Trophic relationships among concentrated populations of small fishes in seagrass meadows. J. exp. mar. Biol. Ecol. 92: 29–43.

    Google Scholar 

  • Jackson, D.A., H.H. Harvey & K.M. Somers. 1990. Ratios in aquatic sciences: statistical shortcomings with mean depth and the morphoedaphic index. Can. J. Fish. Aquat. Sci. 47: 1788–1795.

    Google Scholar 

  • Jackson, D.A. & K.M. Somers. 1991. The spectre of ‘spurious’ correlations. Oecologia 86: 147–151.

    Google Scholar 

  • Johansson, J.O.R., K.A. Steidenger & D.C. Carpenter. 1985. Primary production in Tampa Bay: a review, pp. 279–298. In: S.F. Treat, J.L. Simon, R.R. Lewis & R.L. Whitman,Jr.(eds) Tampa basis. Bay Area Scientific Information Symposium, Bellwether Press, Edina.

    Google Scholar 

  • Jongman, R.H.G., C.J.F. ter Braak & O.F.R. van Tongeren(eds). 1987. Data analysis in community and landscape ecology. Pudoc, Wageningen. 298 pp.

    Google Scholar 

  • Karrr, J.R. & F.C. James. 1975. Ecomorphological configurations and convergent evolution in species and communities. pp. 258–291. In: M.L. Cody & J.M. Diamond(eds) Ecology and Evolution of Communities, Belknap Press, Cambridge.

    Google Scholar 

  • Keast, A. & D. Webb. 1966. Mouth and body form relative to feeding ecology in the fish fauna of a small lake, Lake Opinion, Ontario. Journ. Fish. Res. Board Can. 23: 1845–1874.

    Google Scholar 

  • Kotrschal, K. 1989. Trophic ecomorphology in eastern Pacific blennioid fishes: character transformation of oral jaws and associated change of their biological role. Env. Biol. Fish. 24: 199–218.

    Google Scholar 

  • Lagler, K.F., J.E. Bardach & R.R. Miller. 1962. Ichthyology. John Wiley and Sons, New York. 497 pp.

    Google Scholar 

  • Lauder, G.V. & K.F. Liem. 1983. The evolution and interrelationships of the Actinopterygian fishes. Bull. Mus. Comp. Zool. 150: 95–197.

    Google Scholar 

  • Leisler, B. 1980. Morphological aspects of ecological specialization in bird genera. Okol. Vogel. 2: 199–220.

    Google Scholar 

  • Leisler, B. & H. Winkler, 1985. Ecomorphology. pp. 155–186. In: R.F. Johnston(ed.) Current Ornithology, Plenum Press, New York.

    Google Scholar 

  • Liem, K.F. 1980. Adaptive significance of intra and interspecific differences in the feeding repertoires of cichlid fishes. Amer. Zool. 20: 295–314.

    Google Scholar 

  • Livingston, R.J. 1976. Diurnal and seasonal fluctuations of organisms in a north Florida estuary. Estuarine and Coastal Marine Science 4: 373–400.

    Google Scholar 

  • Livingston, R.J. 1982. Trophic organization of fishes in a coastal seagrass system. Mar. Ecol. Prog. Set. 7: 1–12.

    Google Scholar 

  • Livingston, R.J. 1984. Trophic response of fishes to habitat variability in coastal seagrass systems. Ecology 65: 1258–1275.

    Google Scholar 

  • Losos, J.B. 1990a. Ecomorphology, performance capability, and scaling of West Indian Anolis lizards: an evolutionary analysis. Ecol. Monogr. 60: 369–388.

    Google Scholar 

  • Losos, J.B. 1990b. The evolution of form and function: morphology and locomotor performance in West Indian Anolis lizards. Evolution 44: 1189–1203.

    Google Scholar 

  • Lucas, J.R. 1982. Feeding ecology of the gulf silverside, Menidia peninsulae, near Crystal River, Florida, with notes on its life history. Estuaries 5: 138–144.

    Google Scholar 

  • Ludwig, J.A. & J.F. Reynolds. 1988. Statistical ecology. John Wiley and Sons, New York. 337 pp.

    Google Scholar 

  • Miles, B.M., R.E. Ricklefs & J. Travis. 1987. Concordance of ecomorphological relationships in three assemblages of passerine birds. Amer. Nat. 129: 347–364.

    Google Scholar 

  • Miles, D.B. & R.E. Ricklefs. 1984. The correlation between ecology and morphology in deciduous forest passerine birds. Ecology 65: 1629–1640.

    Google Scholar 

  • Motta, P.J. 1984. Mechanics and functions of jaw protrusion in teleost fishes. a review. Copeia 1984:1–18.

  • Motta, P.J. 1985. Functional morphology of the head of Hawaiian and Mid-Pacific butterflyfishes (Perciformes, Chaetodontidae). Env. Biol. Fish. 13: 253–276.

    Google Scholar 

  • Motta, P.J. 1988. Functional morphology of the feeding apparatus often species of Pacific butterflyfishes (Perciformes, Chaetodontidae): and ecomorphological approach. Env. Biol. Fish. 22: 39–67.

    Google Scholar 

  • Motta, P.J. & K.M. Kotrschal. 1992. Correlative, experimental, and comparative evolutionary approaches in ecomorphology. Neth. J. Zool. 42: 400–415.

    Google Scholar 

  • Motta, P.J., K.B. Clifton, P. Hernandez, B.T. Eggold, S.D. Giordano & R. Wilcox. 1995. Feeding relationships among nine species of seagrass fishes of Tampa Bay, Florida. Bull. Mar. Sci. 56: 185–200.

    Google Scholar 

  • Moyle, P.B. & F.R. Senanayake. 1984. Resource partitioning among the fishes of rainforest streams in Sri Lanka. J. Zool. Lond. 202: 195–223.

    Google Scholar 

  • Norton, S.F. 1991. Capture success and diet of cottid fishes: the role of predator morphology and attack kinematics. Ecology 72: 1807–1819.

    Google Scholar 

  • Pinkas, L., M.S. Oliphant & I.L.K. Iverson. 1971. Food habits of albacore, bluefin tuna and bonito in California Waters. Calif. Fish Game. 152: 1–105.

    Google Scholar 

  • Pounds, J.A. 1988. Ecomorphology, locomotion, and microhabitat structure: patterns in a tropical mainland Anolis community. Ecol. Monog. 58: 299–320.

    Google Scholar 

  • Reist, J.D. 1985. An empirical evaluation of several univariate methods that adjust for size variation in morphometric data. Can. J. Zool. 63: 1429–1439.

    Google Scholar 

  • Ricklefs, R.E. & G.W. Cox. 1977. Morphological similarity and ecological overlap among passerine birds on St. Kitts, British West Indies. Oikos 29: 60–66.

    Google Scholar 

  • Ricklefs, R.E. & J. Travis. 1980. A morphological approach to the study of avian community organization. The Auk 97: 321–338.

    Google Scholar 

  • Ross, S.T. 1986. Resource partitioning in fish assemblages: a review of field studies. Copeia 1986: 352–388.

  • Sanderson, S.L. & J.J. Cech,Jr. 1992. Energetic cost of suspension feeding versus particulate feeding by juvenile Sacramento blackfish. Trans. Amer. Fish. Soc. 121: 149–157.

    Google Scholar 

  • Schaeffer, B. & D.E. Rosen. 1961. Major adaptive levels in the evolution of the actinopterygian feeding mechanism. Amer. Zool. 1: 187–204.

    Google Scholar 

  • Springer, V.G. & K.D. Woodburn. 1960. An ecological study of the fishes of Tampa Bay area. Fla. St. Board Conser. Prof. Pap. 1: 1–104.

    Google Scholar 

  • Stoner, A.W. 1980. Feeding ecology of Lagodon rhomboides (Pisces, Sparidae): variation and functional response. U.S. Fish. Bull. 78: 337–352.

    Google Scholar 

  • Stoner, A.W. 1983. Distribution of fishes in seagrass meadows: role of macrophyte biomass and species composition. U.S. Fish. Bull. 81: 837–846.

    Google Scholar 

  • Stoner, A.W. & R.J. Livingston. 1984. Ontogenetic patterns in diet and feeding morphology in sympatric sparid fishes from Copeia 1984:174–187.

  • Strauss, R.E. 1987. The importance of phylogenetic constraints in comparisons of morphological structure among fish assemblages. pp. 136–143. In: W.J. Mathews & D.C Heins(eds) Evolutionary Ecology of North American Stream Fishes, University of Oklahoma Press, Norman.

    Google Scholar 

  • Subrabmanyam, C.B. & S.H. Drake. 1975. Studies on the animal communities in two north Florida salt marshes. Part III. Seasonal fluctuations of fish and macroinvertebrates. Bull. Mar. Sci. 25: 445–465.

    Google Scholar 

  • Suyehiro, Y. 1942. A study on the digestive system and feeding habits of fish. Japan. J. Zool. 10: 1–301.

    Google Scholar 

  • ter Braak, C.J.F. 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1179.

    Google Scholar 

  • ter Braak, C.J.F. 1987. The analysis of vegetation-environment relationships by canonical correspondence analysis. Vegetatio 69: 69–77.

    Google Scholar 

  • ter Braak, C.J.F. 1988. CANOCO— a FORTRAN program for canonical community ordination by correspondence analysis, principal components analysis and redundancy analysis (version 3.12). Report LWA-88-02, Agricultural Mathematics Group, Wageningen. 95 pp.

    Google Scholar 

  • Thayer, G.W., D.R. Colby & W.F. Hettler,Jr. 1987. Utilization of the red mangrove prop root habitat by fishes in south Florida. Mar. Ecol. Prog. Ser. 35: 25–38.

    Google Scholar 

  • Wainwright, P.C. 1987. Biochemical limits to ecological performance: mollusc-crushing by the Caribbean hogfish, Lachnolaimus maximus (Labridae). J. Zool. Lond. 213: 283–297.

    Google Scholar 

  • Wainwright, P.C. 1988. Morphology and ecology: functional basis of feeding constraints in Caribbean labrid fishes. Ecology 69: 635–645.

    Google Scholar 

  • Wainwright, P.C. 1991. Ecomorphology: experimental functional anatomy for ecological problems. Amer. Zool. 31: 680–693.

    Google Scholar 

  • Watson, D.J. & E.K. Balon. 1984. Ecomorphological analysis of fish taxocenes in rainforest streams of northern Borneo. J. Fish Biol. 25: 371–384.

    Google Scholar 

  • Webb, P.W. 1984. Body form, locomotion and foraging in aquatic vertebrates. Amer. Zool. 24: 107–120.

    Google Scholar 

  • Wesneat, M.W. 1995. Phylogenetic systematics and biomechanics in ecomorphology. Env. Biol. Fish. (in press).

  • Wiens, J.A. 1991a. Ecological similarity of shrub-desert avifaunas of Australia and North America. Ecology 72: 479–495.

    Google Scholar 

  • Wiens, J.A. 1991b. Ecomorphological comparisons of the shrub-desert avifaunas of Australia and North America. Oikos 60: 55–63.

    Google Scholar 

  • Wiens, J.A. & J.T. Rotenberry. 1980. Patterns of morphology and ecology in grassland and shrubsteppe bird populations. Ecol. Monogr. 50: 287–308.

    Google Scholar 

  • Wikramanayake, F.D. 1990. Ecomorphology and biogeography of a tropical stream fish assemblage: evolution of assemblage structure. Ecology 71: 1756–1764.

    Google Scholar 

  • Winemiller, K.O. 1991. Ecomorphological diversification in lowland freshwater fish assemblages from five biotic regions. Ecol. Monogr. 61: 343–365.

    Google Scholar 

  • Winemiller, K.O., L.C. Kelso-Winemiller & A.L. Brenkert. 1995. Ecomorphological diversification and convergence in fluvial cichlid fishes. Env. Biol. Fish. 44: 235–261.

    Google Scholar 

  • Yamaoka, K. 1983. Feeding behaviour and dental morphology of algae scraping cichlids (Pisces: Teleostei) in Lake Tanganyika. African Study Monographs 4: 77–89.

    Google Scholar 

  • Yamaoka, K., M. Hori & S. Kuratani. 1986. Ecomorphology of feeding in ‘goby-like’ cichlid fish in Lake Tanganyika. Physiol. Ecol. Japan. 23: 17–29.

    Google Scholar 

  • Young, D.K. & M.W. Young. 1978. Regulation of species densities of seagrass-associated macrobenthos: evidence from field experiments in the Indian River estuary. Fla. J. Mar. Res. 36: 569–593.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Motta, P.J., Clifton, K.B., Hernandez, P. et al. Ecomorphological correlates in ten species of subtropical seagrass fishes: diet and microhabitat utilization. Environ Biol Fish 44, 37–60 (1995). https://doi.org/10.1007/BF00005906

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00005906

Key words

Navigation