iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-981-99-8850-1_46
Diagnosis Then Aggregation: An Adaptive Ensemble Strategy for Keyphrase Extraction | SpringerLink
Skip to main content

Diagnosis Then Aggregation: An Adaptive Ensemble Strategy for Keyphrase Extraction

  • Conference paper
  • First Online:
Artificial Intelligence (CICAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14473))

Included in the following conference series:

Abstract

Keyphrase extraction (KE) is a fundamental task in the information extraction, which has recently gained increasing attention. However, when facing text with complex structure or high noise, current individual keyphrase extraction methods fail to handle capturing multiple features and limit the performance of the keyphrase extraction. To solve that, ensemble learning methods are employed to achieve better performance. Unfortunately, traditional ensemble strategies rely only on the extraction performance (e.g., Accuracy) of each algorithm on the whole dataset for keyphrase extraction, and the aggregated weights are commonly fixed, lacking fine-grained considerations and adaptiveness to the data. To this end, in this paper, we propose an Adaptive Ensemble strategy for Keyphrase Extraction (AEKE) that can aggregate individual KE models adaptively. Specifically, we first obtain the multi-dimensional abilities of individual KE models by employing cognitive diagnosis methods. Then, based on the diagnostic abilities, we introduce an adaptive ensemble strategy to yield an accurate and reliable weight distribution for model aggregation when facing new data, and further apply it to improve keyphrase extraction in the model aggregation. Extensive experimental results on real-world datasets clearly validate the effectiveness of AEKE. Code is released at https://github.com/kingiv4/AEKE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/boudinfl/pke..

References

  1. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    Google Scholar 

  2. Boudin, F.: Unsupervised keyphrase extraction with multipartite graphs. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 667–672 (2018)

    Google Scholar 

  3. Bougouin, A., Boudin, F., Daille, B.: TopicRank: graph-based topic ranking for keyphrase extraction. In: International Joint Conference on Natural Language Processing (IJCNLP), pp. 543–551 (2013)

    Google Scholar 

  4. Campos, R., Mangaravite, V., Pasquali, A., Jorge, A.M., Nunes, C., Jatowt, A.: A text feature based automatic keyword extraction method for single documents. In: Pasi, G., Piwowarski, B., Azzopardi, L., Hanbury, A. (eds.) ECIR 2018. LNCS, vol. 10772, pp. 684–691. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76941-7_63

    Chapter  Google Scholar 

  5. De La Torre, J.: Dina model and parameter estimation: a didactic. Journal of educational and behavioral statistics 34(1), 115–130 (2009)

    Article  Google Scholar 

  6. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  7. Ding, H., Luo, X.: AttentionRank: unsupervised keyphrase extraction using self and cross attentions. In: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 1919–1928 (2021)

    Google Scholar 

  8. Dong, X., Yu, Z., Cao, W., Shi, Y., Ma, Q.: A survey on ensemble learning. Front. Comp. Sci. 14, 241–258 (2020)

    Article  Google Scholar 

  9. Florescu, C., Caragea, C.: PositionRank: an unsupervised approach to keyphrase extraction from scholarly documents. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1105–1115 (2017)

    Google Scholar 

  10. Gallina, Y., Boudin, F., Daille, B.: Large-scale evaluation of keyphrase extraction models. In: Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2020, pp. 271–278 (2020)

    Google Scholar 

  11. Ganaie, M.A., Hu, M., Malik, A., Tanveer, M., Suganthan, P.: Ensemble deep learning: a review. Eng. Appl. Artif. Intell. 115, 105151 (2022)

    Article  Google Scholar 

  12. Gao, W., et al.: RCD: relation map driven cognitive diagnosis for intelligent education systems. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 501–510 (2021)

    Google Scholar 

  13. Gao, W., et al.: Leveraging transferable knowledge concept graph embedding for cold-start cognitive diagnosis. In: Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 983–992

    Google Scholar 

  14. Hasan, K.S., Ng, V.: Automatic keyphrase extraction: A survey of the state of the art. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1262–1273 (2014)

    Google Scholar 

  15. Hulth, A.: Improved automatic keyword extraction given more linguistic knowledge. In: Proceedings of the 2003 Conference on Empirical Methods in Natural Language Processing, pp. 216–223 (2003)

    Google Scholar 

  16. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  17. Liu, C., Yang, L., Gao, W., Li, Y., Liu, Y.: MuST: an interpretable multidimensional strain theory model for corporate misreporting prediction. Electron. Commer. Res. Appl. 57, 101225 (2023)

    Article  Google Scholar 

  18. Liu, Q.: Towards a new generation of cognitive diagnosis. In: IJCAI, pp. 4961–4964 (2021)

    Google Scholar 

  19. Liu, Y., et al.: Technical phrase extraction for patent mining: a multi-level approach. In: 2020 IEEE International Conference on Data Mining (ICDM), pp. 1142–1147. IEEE (2020)

    Google Scholar 

  20. Liu, Y., et al.: TechPat: technical phrase extraction for patent mining. ACM Trans. Knowl. Disc. Data 17, 1–31 (2023)

    Article  Google Scholar 

  21. Liu, Z., Huang, W., Zheng, Y., Sun, M.: Automatic keyphrase extraction via topic decomposition. In: Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pp. 366–376 (2010)

    Google Scholar 

  22. Lord, F.: A Theory of Test Scores. Psychometric Monographs (1952)

    Google Scholar 

  23. Meng, R., Wang, T., Yuan, X., Zhou, Y., He, D.: General-to-specific transfer labeling for domain adaptable keyphrase generation. arXiv preprint arXiv:2208.09606 (2022)

  24. Mihalcea, R., Tarau, P.: TextRank: bringing order into text. In: Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing. pp. 404–411 (2004)

    Google Scholar 

  25. Papagiannopoulou, E., Tsoumakas, G.: A review of keyphrase extraction. Wiley Interdisc. Rev. Data Min. Knowl. Disc. 10(2), e1339 (2020)

    Article  Google Scholar 

  26. Peterson, L.E.: K-nearest neighbor. Scholarpedia 4(2), 1883 (2009)

    Article  Google Scholar 

  27. Song, M., Feng, Y., Jing, L.: A survey on recent advances in keyphrase extraction from pre-trained language models. In: Findings of the Association for Computational Linguistics, EACL 2023, pp. 2108–2119 (2023)

    Google Scholar 

  28. Sun, S., Liu, Z., Xiong, C., Liu, Z., Bao, J.: Capturing global informativeness in open domain keyphrase extraction. In: Wang, L., Feng, Y., Hong, Yu., He, R. (eds.) NLPCC 2021. LNCS (LNAI), vol. 13029, pp. 275–287. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88483-3_21

    Chapter  Google Scholar 

  29. Sun, Y., Qiu, H., Zheng, Y., Wang, Z., Zhang, C.: SIFRank: a new baseline for unsupervised keyphrase extraction based on pre-trained language model. IEEE Access 8, 10896–10906 (2020)

    Article  Google Scholar 

  30. Wan, X., Xiao, J.: Single document keyphrase extraction using neighborhood knowledge. In: AAAI, vol. 8, pp. 855–860 (2008)

    Google Scholar 

  31. Wang, F., et al.: Neural cognitive diagnosis for intelligent education systems. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 6153–6161 (2020)

    Google Scholar 

  32. Xiong, L., Hu, C., Xiong, C., Campos, D., Overwijk, A.: Open domain web keyphrase extraction beyond language modeling. In: Proceedings of the EMNLP-IJCNLP 2019, pp. 5175–5184 (2019)

    Google Scholar 

  33. Yue, L., Liu, Q., Du, Y., An, Y., Wang, L., Chen, E.: DARE: disentanglement-augmented rationale extraction. In: Advances in Neural Information Processing Systems (2022)

    Google Scholar 

  34. Zhao, H., Lu, M., Yao, A., Guo, Y., Chen, Y., Zhang, L.: Physics inspired optimization on semantic transfer features: an alternative method for room layout estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10–18 (2017)

    Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the National Key Research and Development Program of China (Grant No. 2021YFF0901003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jin, X. et al. (2024). Diagnosis Then Aggregation: An Adaptive Ensemble Strategy for Keyphrase Extraction. In: Fang, L., Pei, J., Zhai, G., Wang, R. (eds) Artificial Intelligence. CICAI 2023. Lecture Notes in Computer Science(), vol 14473. Springer, Singapore. https://doi.org/10.1007/978-981-99-8850-1_46

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8850-1_46

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8849-5

  • Online ISBN: 978-981-99-8850-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics