iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-981-99-8126-7_41
An Adaptive Auxiliary Training Method of Autoencoders and Its Application in Anomaly Detection | SpringerLink
Skip to main content

An Adaptive Auxiliary Training Method of Autoencoders and Its Application in Anomaly Detection

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Abstract

In various applications of autoencoders, an auxiliary subnetwork is used to improve the performance of a neural network with an autoencoder as the key component. For the specific task of anomaly detection, we have observed that in certain cases, when the reconstruction performance reaches a high level, the auxiliary subnetwork becomes ineffective in further improving the autoencoder’s performance. This phenomenon results in oscillation and degradation of the overall system. To address this issue, we propose an adaptive auxiliary training method (AAT) that ensures continuous improvement in the autoencoder’s reconstruction performance throughout the entire training procedure. AAT enhances the monitoring of the autoencoder’s training, enabling adaptive adjustment of the training strategy without a validation set. Additionally, an anomaly detection scheme is devised based on the proposed adaptive auxiliary training method. Experimental results on multiple datasets prove that the proposed methods produce autoencoders with better reconstruction and detection performances comparing to the state-of-the-art (SOTA) methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, K., et al.: History matching of naturally fractured reservoirs using a deep sparse autoencoder. SPE J. 26(04), 1700–1721 (2021)

    Article  Google Scholar 

  2. Lai, Z., Liu, S., Efros, A.A., Wang, X.: Video autoencoder: self-supervised disentanglement of static 3d structure and motion. In: Proceedings of the IEEE/CVF International Conference on Computer Vision 2021, pp. 9730–9740 (2021)

    Google Scholar 

  3. Parmar, G., Li, D., Lee, K., Tu, Z.: Dual contradistinctive generative autoencoder. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 823–832 (2021)

    Google Scholar 

  4. Nguyen, H., Tran, K.P., Thomassey, S., Hamad, M.: Forecasting and anomaly detection approaches using LSTM and LSTM autoencoder techniques with the applications in supply chain management. Int. J. Inf. Manage. 57, 102282 (2021)

    Article  Google Scholar 

  5. Kim, J., Kong, J., Son, J.: Conditional variational autoencoder with adversarial learning for end-to-end text-to-speech. In: International Conference on Machine Learning PMLR, pp. 5530–5540 (2021)

    Google Scholar 

  6. Shao, H., Xia, M., Wan, J., de Silva, C.W.: Modified stacked autoencoder using adaptive morlet wavelet for intelligent fault diagnosis of rotating machinery. IEEE/ASME Trans. Mechatron. 27(1), 24–33 (2021)

    Article  Google Scholar 

  7. Wang, C., Lucey, S.: Paul: procrustean autoencoder for unsupervised lifting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 434–443 (2021)

    Google Scholar 

  8. Ngairangbam, V.S., Spannowsky, M., Takeuchi, M.: Anomaly detection in high-energy physics using a quantum autoencoder. Phys. Rev. D 105(9), 095004 (2022)

    Article  Google Scholar 

  9. Le, V.-T., Kim, Y.-G.: Attention-based residual autoencoder for video anomaly detection. Appl. Intell. 53(3), 3240–3254 (2023)

    Article  Google Scholar 

  10. Chen, X., et al.: Context autoencoder for self-supervised representation learning University of Trento, pp. 1–16. Trento Italy University of Amsterdam, Amsterdam The Netherlands (2023)

    Google Scholar 

  11. Yan, S., Shao, H., Xiao, Y., Liu, B., Wan, J.: Hybrid robust convolutional autoencoder for unsupervised anomaly detection of machine tools under noises. Robot. Comput.-Integr. Manufactur. 79, 102441 (2023)

    Article  Google Scholar 

  12. Fanai, H., Abbasimehr, H.: A novel combined approach based on deep autoencoder and deep classifiers for credit card fraud detection. In: College of Hydroelectric and Digitalization Engineering, Huazhong University of Science and Technology, Hubei Province 430074 Wuhan, China; Dispatch and Communication Center, Hunan Electric Power Company, Hunan Province C, vol. 217, p. 119562 (2023)

    Google Scholar 

  13. Liang, Y., Liang, W.: ResWCAE: Biometric Pattern Image Denoising Using Residual Wavelet-Conditioned Autoencoder arXiv preprint arXiv:2307.12255 (2023)

  14. Kuzmanovic, M., Hatt, T., Feuerriegel, S.: Deconfounding temporal autoencoder: estimating treatment effects over time using noisy proxies. In: Presented at the Proceedings of Machine Learning for Health, Proceedings of Machine Learning Research (2021). https://proceedings.mlr.press/v158/kuzmanovic21a.html

  15. Akcay, S., Atapour-Abarghouei, A., Breckon, T.P.: Ganomaly: Semi-supervised anomaly detection via adversarial training. In: Asian Conference on Computer Vision, pp. 622–637. Springer (2018)

    Google Scholar 

  16. Akçay, S., Atapour-Abarghouei, A., Breckon, T.P.: Skip-ganomaly: Skip connected and adversarially trained encoder-decoder anomaly detection. In: 2019 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2019)

    Google Scholar 

  17. Latif, S., Rana, R., Khalifa, S., Jurdak, R., Epps, J., Schuller, B.W.: Multi-task semi-supervised adversarial autoencoding for speech emotion recognition. In: IEEE Transactions on Affective computing (2020)

    Google Scholar 

  18. Yuan, F., Yao, L., Benatallah, B.: Adversarial collaborative auto-encoder for top-n recommendation. In: 2019 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2019

    Google Scholar 

  19. Zhong, G., Gao, W., Liu, Y., Yang, Y., Wang, D.-H., Huang, K.: Generative adversarial networks with decoder–encoder output noises. Neural Netw. 127, 19–28 (2020)

    Article  MATH  Google Scholar 

  20. Zhang, Z., Chen, Y., Wagner, D.: Seat: Similarity encoder by adversarial training for detecting model extraction attack queries. In: Proceedings of the 14th ACM Workshop on Artificial Intelligence and Security, pp. 37–48 (2021)

    Google Scholar 

  21. Blance, A., Spannowsky, M., Waite, P.: Adversarially-trained autoencoders for robust unsupervised new physics searches. J. High Energy Phys. 2019(10), 1–19 (2019)

    Article  Google Scholar 

  22. Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: MVTec AD--A comprehensive real-world dataset for unsupervised anomaly detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9592–9600 (2019)

    Google Scholar 

  23. Kimura, D., Chaudhury, S., Narita, M., Munawar, A., Tachibana, R.: Adversarial discriminative attention for robust anomaly detection. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2172–2181 (2020)

    Google Scholar 

  24. Marafioti, A., Majdak, P., Holighaus, N., Perraudin, N.: GACELA: a generative adversarial context encoder for long audio inpainting of music. IEEE J. Select. Top. Sign. Process. 15(1), 120–131 (2020)

    Article  Google Scholar 

  25. Li, C., et al.: Fusing convolutional generative adversarial encoders for 3D printer fault detection with only normal condition signals. Mech. Syst. Signal Process. 147, 107108 (2021)

    Article  Google Scholar 

  26. Sahu, S., Gupta, R., Sivaraman, G., AbdAlmageed, W., Espy-Wilson, C.: Adversarial auto-encoders for speech based emotion recognition, arXiv preprint arXiv:1806.02146 (2018)

  27. Chouchane, O., et al.: Differentially private adversarial auto-encoder to protect gender in voice biometrics. In: Proceedings of the 2023 ACM Workshop on Information Hiding and Multimedia Security, pp. 127–132 (2023)

    Google Scholar 

  28. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  29. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016)

    Google Scholar 

  30. LeCun, Y.: The MNIST database of handwritten digits. http://yann.lecun.com/exdb/mnist/ (1998)

  31. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  32. Gong, D., et al.: Memorizing normality to detect anomaly: Memory-augmented deep autoencoder for unsupervised anomaly detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1705–1714 (2019)

    Google Scholar 

  33. Zong, B., et al.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018)

    Google Scholar 

  34. Zhai, S., Cheng, Y., Lu, W., Zhang, Z.: Deep structured energy based models for anomaly detection. In: presented at the Proceedings of the 33rd International Conference on Machine Learning, Proceedings of Machine Learning Research (2016). https://proceedings.mlr.press/v48/zhai16.html

  35. Scholkopf, B., Williamson, R., Smola, A., Shawe-Taylor, J., Platt, J.: Support vector method for novelty detection. Adv. Neural. Inf. Process. Syst. 12(3), 582–588 (2000)

    Google Scholar 

  36. Kingma, D.P., Welling, M.: Auto-encoding variational bayes, arXiv preprint arXiv:1312.6114 (2013)

  37. Van den Oord, A., Kalchbrenner, N., Espeholt, L., Vinyals, O., Graves, A.: Conditional image generation with pixelcnn decoders. Adv. Neural Inf. Process. Syst. 4790–4798 (2016)

    Google Scholar 

Download references

Acknowledgement

This work is funded by Zhejiang “Lingyan” Research and Development Program (No. 2022C03121). We are grateful for the support of this program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Niu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Niu, L., Liao, J., Sha, F., Cheng, Z., Qiu, Y. (2024). An Adaptive Auxiliary Training Method of Autoencoders and Its Application in Anomaly Detection. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1961. Springer, Singapore. https://doi.org/10.1007/978-981-99-8126-7_41

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8126-7_41

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8125-0

  • Online ISBN: 978-981-99-8126-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics