Abstract
Microvascular invasion (MVI) is a critical factor that affects the postoperative cure of hepatocellular carcinoma (HCC). Precise preoperative diagnosis of MVI by magnetic resonance imaging (MRI) is crucial for effective treatment of HCC. Compared with traditional methods, deep learning-based MVI diagnostic models have shown significant improvements. However, the black-box nature of deep learning models poses a challenge to their acceptance in medical fields that demand interpretability. To address this issue, this paper proposes an interpretable deep learning model, called Biosignature Identification Network (BIN) based on multi-modal MRI images for the liver cancer MVI prediction task. Inspired by the biological ways to distinguish the species through the biosignatures, our proposed BIN method classifies patients into MVI absence (i.e., Non-MVI or negative) and MVI presence (i.e., positive) by utilizing Non-MVI and MVI biosignatures. The adoption of a transparent decision-making process in BIN ensures interpretability, while the proposed biosignatures overcome the limitations associated with the manual feature extraction. Moreover, a multi-modal MRI based BIN method is also explored to further enhance the diagnostic performance with an attempt to interpretability of multi-modal MRI fusion. Through extensive experiments on the real dataset, it was found that BIN maintains deep model-level performance while providing effective interpretability. Overall, the proposed model offers a promising solution to the challenge of interpreting deep learning-based MVI diagnostic models.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Atrey, P.K., Hossain, M.A., El Saddik, A., et al.: Multimodal fusion for multimedia analysis: a survey. Multimedia Syst. 16, 345–379 (2010)
Chen, C., Li, O., Tao, D., et al.: This looks like that: deep learning for interpretable image recognition. In: Advances in Neural Information Processing Systems 32 (2019)
Chou, C., Chen, R., Lee, C., et al.: Prediction of microvascular invasion of hepatocellular carcinoma by pre-operative ct imaging. Br. J. Radiol. 85(1014), 778–783 (2012)
Erstad, D.J., Tanabe, K.K.: Prognostic and therapeutic implications of microvascular invasion in hepatocellular carcinoma. Ann. Surg. Oncol. 26, 1474–1493 (2019)
Huang, M., Liao, B., Xu, P., et al.: Prediction of microvascular invasion in hepatocellular carcinoma: preoperative gd-eob-dtpa-dynamic enhanced mri and histopathological correlation. In: Contrast Media & Molecular Imaging 2018 (2018)
Kim, S., Shin, J., Kim, D.Y., et al.: Radiomics on gadoxetic acid-enhanced magnetic resonance imaging for prediction of postoperative early and late recurrence of single hepatocellular carcinoma. Clin. Cancer Res. 25(13), 3847–3855 (2019)
Konyn, P., Ahmed, A., Kim, D.: Current epidemiology in hepatocellular carcinoma. Expert Rev. Gastroenterol. Hepatol. 15(11), 1295–1307 (2021)
Lipton, Z.C.: The mythos of model interpretability: in machine learning, the concept of interpretability is both important and slippery. Queue 16(3), 31–57 (2018)
Nealson, K.H., Conrad, P.G.: Life: past, present and future. Philos. Trans. Royal Soc. London. Ser. B: Biolog. Sci. 354(1392), 1923–1939 (1999)
Nuta, J., Shingaki, N., Ida, Y., et al.: Irregular defects in hepatocellular carcinomas during the kupffer phase of contrast-enhanced ultrasonography with perfluorobutane microbubbles: pathological features and metastatic recurrence after surgical resection. Ultrasound Med. Biol. 43(9), 1829–1836 (2017)
Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215 (2019)
Ryu, T., Takami, Y., Wada, Y., et al.: A clinical scoring system for predicting microvascular invasion in patients with hepatocellular carcinoma within the milan criteria. J. Gastrointest. Surg. 23, 779–787 (2019)
Sharif, G.M., Schmidt, M.O., Yi, C., et al.: Cell growth density modulates cancer cell vascular invasion via hippo pathway activity and cxcr2 signaling. Oncogene 34(48), 5879–5889 (2015)
Song, D., Wang, Y., Wang, W., et al.: Using deep learning to predict microvascular invasion in hepatocellular carcinoma based on dynamic contrast-enhanced mri combined with clinical parameters. J. Cancer Res. Clinical Oncol., 1–11 (2021)
Sumie, S., Kuromatsu, R., Okuda, K., et al.: Microvascular invasion in patients with hepatocellular carcinoma and its predictable clinicopathological factors. Ann. Surg. Oncol. 15, 1375–1382 (2008)
Sun, B.Y., Gu, P.Y., Guan, R.Y., et al.: Deep-learning-based analysis of preoperative mri predicts microvascular invasion and outcome in hepatocellular carcinoma. World J. Surgical Oncol. 20(1), 1–13 (2022)
Witjes, C.D., Willemssen, F.E., Verheij, J., et al.: Histological differentiation grade and microvascular invasion of hepatocellular carcinoma predicted by dynamic contrast-enhanced mri. J. Magn. Reson. Imaging 36(3), 641–647 (2012)
Xiao, H., Guo, Y., Zhou, Q., et al.: Prediction of microvascular invasion in hepatocellular carcinoma with expert-inspiration and skeleton sharing deep learning. Liver Int. 42(6), 1423–1431 (2022)
Zhou, W., Jian, W., Cen, X., et al.: Prediction of microvascular invasion of hepatocellular carcinoma based on contrast-enhanced mr and 3d convolutional neural networks. Front. Oncol. 11, 588010 (2021)
Zhou, Y., Sun, S.W., Liu, Q.P., et al.: Ted: Two-stage expert-guided interpretable diagnosis framework for microvascular invasion in hepatocellular carcinoma. Med. Image Anal. 82, 102575 (2022)
Acknowledgements
This work was partially supported by the General Program of National Natural Science Foundation of China (NSFC) under Grant 62276189, and the Fundamental Research Funds for the Central Universities No. 22120220583.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Zheng, P., Li, B., Lai, H., Luo, Y. (2024). BIN: A Bio-Signature Identification Network for Interpretable Liver Cancer Microvascular Invasion Prediction Based on Multi-modal MRIs. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Lecture Notes in Computer Science, vol 14450. Springer, Singapore. https://doi.org/10.1007/978-981-99-8070-3_9
Download citation
DOI: https://doi.org/10.1007/978-981-99-8070-3_9
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-8069-7
Online ISBN: 978-981-99-8070-3
eBook Packages: Computer ScienceComputer Science (R0)