iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-981-99-6222-8_21
TCM Function Multi-classification Approach Using Deep Learning Models | SpringerLink
Skip to main content

TCM Function Multi-classification Approach Using Deep Learning Models

  • Conference paper
  • First Online:
Web Information Systems and Applications (WISA 2023)

Abstract

Traditional Chinese Medicine prescriptions are regarded as an important resource that brings together the treatment experience and wisdom of doctors of all ages. Effectively sorting out and excavating them, especially combining with their functional indications and medication rules, can improve clinical efficacy and new drug research and development. Because the classification system of prescriptions is not completely unified, the data of Chinese patent medicines, national standard formulae and the seventh editions of Chinese formula textbooks are manually integrated, and a quadrat data set containing 21 efficacy classifications is constructed. Since on the text description of prescription information (prescription name, composition, indications and efficacy) in the data set, a variety of deep learning text classification models are used to automatically judge prescription classification, so as to establish an efficient and accurate classification model, and finally construct a prescription efficacy classification data set. The experimental results show that the pre-trained Bert-CNN model has the best effect, with the accuracy rate of 77.87%, and the weighted accuracy rate, weighted recall rate and weighted F1 value of 79.46%, 77.87% and 77.44%, respectively. This study provides a useful reference for further realizing the automatic information processing of ancient formulas.

Supported by the National Natural Science Foundation of China (82174534, 61772249), and the Fundamental Research Funds for the Central Public Welfare Research Institutes (ZZ160311).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yan, Z., Bo, G., Meng, C.: Design and implementation of the analysis system of TCM prescription. China J. Tradit. Chin. Med. Pharm. 29(5), 1543–1546 (2014)

    Google Scholar 

  2. Cui, Y., Gao, B., Liu, L., Liu, J., Zhu, Y.: AMFormulaS: an intelligent retrieval system for traditional Chinese medicine formulas. BMC Med. Inform. Decis. Mak. 21-S(2), 56 (2021). https://doi.org/10.1186/s12911-021-01419-8

  3. Yan, Z., Bo, G., Meng, C.: Statistical analysis on phenomenon of homonym and synonym of Chinese materia medica. China J. Tradit. Chin. Med. Pharm. 30(12), 4422–4425 (2015)

    Google Scholar 

  4. Deshan, G., Wenyu, L., Bingzhu, Z., Xingguang, M.: Application of named entity recognition in the recognition of words for Chinese traditional medicines and Chinese medicine formulae. Chin. Pharmac. Affairs (2019)

    Google Scholar 

  5. Yan, Z., Ling, Z., Jun-Hui, W., Meng, C.: An efficient approach of acquiring knowledge from ancient prescriptions and medicines based on information extraction. China J. Tradit. Chin. Med. Pharm. 30(5), 316–321 (2015)

    Google Scholar 

  6. Administration N H S, China M O H R a S S O T P S R O. Medicine catalogue of national basic medical insurance. Work-Related Injury Insurance and Maternity Insurance (2020). 2020-12-28 [2022-03-02]

    Google Scholar 

  7. Medicine N a O T C. Coding rules for Chinese medicinal formulae and their codes: GB/T 31773-2015. China Quality and Standards Publishing, Beijing (2015)

    Google Scholar 

  8. Zuo, Y., Li, Z.: Prescriptions of Chinese materia medica. China Press of Traditional Chinese Medicine (2021)

    Google Scholar 

  9. Xiao, L., Wang, G., Liu, Y.: Patent text classification based on naive Bayesian method. In: 11th International Symposium on Computational Intelligence and Design, ISCID 2018, Hangzhou, China, 8–9 December 2018, vol. 1, pp. 57–60. IEEE (2018). https://doi.org/10.1109/ISCID.2018.00020

  10. Xia, H., Min, T., Yi, W.: Sentiment text classification of customers reviews on the Web based on SVM. In: International Conference on Natural Computation. IEEE (2010). https://doi.org/10.1109/ICNC.2010.5584077

  11. Cañete-Sifuentes, L., Monroy, R., Medina-Pérez, M.A.: A review and experimental comparison of multivariate decision trees. IEEE Access 9, 110451–110479 (2021). https://doi.org/10.1109/ACCESS.2021.3102239

    Article  Google Scholar 

  12. Yang, Z., Yang, D., Dyer, C., He, X., Smola, A.J., Hovy, E.H.: Hierarchical attention networks for document classification (2016). https://doi.org/10.18653/v1/n16-1174

  13. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. CoRR abs/1810.04805 (2018). http://arxiv.org/abs/1810.04805

  14. Nagwani, N.K., Sharaff, A.: SMS spam filtering and thread identification using bi-level text classification and clustering techniques. J. Inf. Sci. 43(1), 75–87 (2017). https://doi.org/10.1177/0165551515616310

    Article  Google Scholar 

  15. Hai-Bing, M.A., Jiu-Yang, B.I., Xin-Shun, G.: Applications of text classification in network public opinion system. Inf. Sci. 33(05), 97–101 (2015)

    Google Scholar 

  16. Kapusta, J., Drlík, M., Munk, M.: Using of N-grams from morphological tags for fake news classification. PeerJ Comput. Sci. 7, e624 (2021). https://doi.org/10.7717/peerj-cs.624

    Article  Google Scholar 

  17. Yu, H., Pan, X., Zhao, D., Wen, Y., Yuan, X.: A hybrid model for spatio-temporal information recognition in COVID-19 trajectory text. In: Zhao, X., Yang, S., Wang, X., Li, J. (eds.) WISA 2022. LNCS, vol. 13579, pp. 267–279. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20309-1_23

    Chapter  Google Scholar 

  18. Li, X., Cui, M., Li, J., Bai, R., Lu, Z., Aickelin, U.: A hybrid medical text classification framework: Integrating attentive rule construction and neural network. Neurocomputing 443, 345–355 (2021). https://doi.org/10.1016/j.neucom.2021.02.069

    Article  Google Scholar 

  19. Prabhakar, S.K., Won, D.: Medical text classification using hybrid deep learning models with multihead attention. Comput. Intell. Neurosci. 2021, 9425655:1–9425655:16 (2021). https://doi.org/10.1155/2021/9425655

  20. Cui, M., Bai, R., Lu, Z., Li, X., Aickelin, U., Ge, P.: Regular expression based medical text classification using constructive heuristic approach. IEEE Access 7, 147892–147904 (2019). https://doi.org/10.1109/ACCESS.2019.2946622

    Article  Google Scholar 

  21. Zheng, C., Wang, X., Wang, T., et al.: Multi-label classification for medical text based on ALBERT-TextCNN model. J. Shandong Univ. (Sci. Edn.) 57(04), 21–29 (2022)

    Google Scholar 

  22. Li, Q., Liao, W.: Biomedical text classification model based on attention mechanism. Chin. J. Med. Phys. 39(04), 518–523 (2022)

    Google Scholar 

  23. Zhou, F., Jin, L., Dong, J.: Review of convolutional neural network. Chin. J. Comput. 40(6), 23 (2017)

    MathSciNet  Google Scholar 

  24. Kim, Y.: Convolutional neural networks for sentence classification. (2014). https://doi.org/10.3115/v1/d14-1181

  25. Yang, L., Wu, Y., Wamg, J., Liu, Y.: Research on recurrent neural network. J. Comput. Appl. 38(A02), 7 (2018)

    Google Scholar 

  26. Liu, P., Qiu, X., Huang, X.: Recurrent neural network for text classification with multi-task learning (2016)

    Google Scholar 

  27. Lai, S., Xu, L., Liu, K., Zhao, J.: Recurrent convolutional neural networks for text classification. In: National Conference on Artificial Intelligence (2015)

    Google Scholar 

  28. Zhou, P., Shi, W., Tian, J., Qi, Z., Xu, B.: Attention-based bidirectional long short-term memory networks for relation classification. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (2016)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (82174534, 61772249), and the Fundamental Research Funds for the Central Public Welfare Research Institutes (ZZ160311).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangfu Meng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ren, Q., Li, K., Yang, D., Zhu, Y., Yao, K., Meng, X. (2023). TCM Function Multi-classification Approach Using Deep Learning Models. In: Yuan, L., Yang, S., Li, R., Kanoulas, E., Zhao, X. (eds) Web Information Systems and Applications. WISA 2023. Lecture Notes in Computer Science, vol 14094. Springer, Singapore. https://doi.org/10.1007/978-981-99-6222-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6222-8_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6221-1

  • Online ISBN: 978-981-99-6222-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics