Abstract
The task of Named Entity Recognition (NER) is an important component of information extraction tasks. Currently, span-based approaches are receiving widespread research attention. Despite their success in many aspects, these approaches also suffer from insufficient utilization of non-entity information. In this work, we view the span-based NER task as an edge detection task and propose EDNER (Edge Detection for Named Entity Recognition). In this method, we define the edge representation of text and generate deep representations through a specially designed edge interaction layer, while auxiliary edge contrastive learning and global edge detection task allow the model to fully adapt to the task of edge detection. Our carefully designed convolutional layers and prediction layers extract entity spans by detecting entity edges. Experimental results show that our method outperforms existing state-of-the-art methods and achieves highest F1 scores on four benchmark NER datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12, 2493–2537 (2011)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)
Dozat, T., Manning, C.D.: Deep biaffine attention for neural dependency parsing. arXiv preprint arXiv:1611.01734 (2016)
Fan, L., Song, F., Jutamulia, S.: Edge detection with large depth of focus using differential Haar-Gaussian wavelet transform. Optics Commun. 270(2), 169–175 (2007)
Gui, T., et al.: A lexicon-based graph neural network for Chinese NER. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 1040–1050 (2019)
Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural architectures for named entity recognition. arXiv preprint arXiv:1603.01360 (2016)
Levow, G.A.: The third international Chinese language processing bakeoff: word segmentation and named entity recognition. In: Proceedings of the Fifth SIGHAN Workshop on Chinese Language Processing, pp. 108–117 (2006)
Li, J., et al.: Unified named entity recognition as word-word relation classification. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 10965–10973 (2022)
Li, Y., Yu, Y., Qian, T.: Type-aware decomposed framework for few-shot named entity recognition. arXiv preprint arXiv:2302.06397 (2023)
Ma, R., Peng, M., Zhang, Q., Huang, X.: Simplify the usage of lexicon in Chinese NER. arXiv preprint arXiv:1908.05969 (2019)
Ning, J., Yang, Z., Sun, Y., Wang, Z., Lin, H.: OD-RTE: a one-stage object detection framework for relational triple extraction. In: Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 11120–11135 (2023)
Ning, J., Yang, Z., Wang, Z., Sun, Y., Lin, H., Wang, J.: Two languages are better than one: bilingual enhancement for Chinese named entity recognition. In: Proceedings of the 29th International Conference on Computational Linguistics, pp. 2024–2033 (2022)
Ohta, T., Tateisi, Y., Kim, J.D., Mima, H., Tsujii, J.: The GENIA corpus: an annotated research abstract corpus in molecular biology domain. In: Proceedings of the Human Language Technology Conference, pp. 73–77. Citeseer (2002)
Prewitt, J.: Picture Processing and Psychopictorics. Academic Press, New York 3(2), 58–71 (1970)
Sang, E.F., De Meulder, F.: Introduction to the CoNLL-2003 shared task: language-independent named entity recognition. arXiv preprint arxiv: cs/0306050 (2003)
Sekehravani, E.A., Babulak, E., Masoodi, M.: Implementing canny edge detection algorithm for noisy image. Bull. Electr. Eng. Inform. 9(4), 1404–1410 (2020)
Shen, Y., Ma, X., Tan, Z., Zhang, S., Wang, W., Lu, W.: Locate and label: a two-stage identifier for nested named entity recognition. arXiv preprint arXiv:2105.06804 (2021)
Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: DiffusionNER: boundary diffusion for named entity recognition. arXiv preprint arXiv:2305.13298 (2023)
Shen, Y., Wang, X., Tan, Z., Xu, G., Xie, P., Huang, F., Lu, W., Zhuang, Y.: Parallel instance query network for named entity recognition. arXiv preprint arXiv:2203.10545 (2022)
Sobel, I.: Neighborhood coding of binary images for fast contour following and general binary array processing. Comput. Graphics Image Process. 8(1), 127–135 (1978)
Soria, X., Sappa, A., Humanante, P., Akbarinia, A.: Dense extreme inception network for edge detection. Pattern Recogn. 139, 109461 (2023)
Su, Z., et al.: Pixel difference networks for efficient edge detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5117–5127 (2021)
Tan, Z., Shen, Y., Zhang, S., Lu, W., Zhuang, Y.: A sequence-to-set network for nested named entity recognition. arXiv preprint arXiv:2105.08901 (2021)
Wan, J., Ru, D., Zhang, W., Yu, Y.: Nested named entity recognition with span-level graphs. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 892–903 (2022)
Wang, B., Lu, W.: Neural segmental hypergraphs for overlapping mention recognition. arXiv preprint arXiv:1810.01817 (2018)
Wang, Q., Wang, T., Zhang, K.: Image edge detection based on the grey prediction model and discrete wavelet transform. Kybernetes 41(5/6), 643–654 (2012)
Zhang, Y., Yang, J.: Chinese NER using lattice LSTM. arXiv preprint arXiv:1805.02023 (2018)
Zhu, E., Li, J.: Boundary smoothing for named entity recognition. In: Muresan, S., Nakov, P., Villavicencio, A. (eds.) Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 7096–7108. Association for Computational Linguistics, Dublin, Ireland (May 2022). https://doi.org/10.18653/v1/2022.acl-long.490, https://aclanthology.org/2022.acl-long.490
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Gao, L., Yang, Z., Luo, L., Liu, W., Lin, H., Wang, J. (2025). EDNER: Edge Detection for Named Entity Recognition. In: Wong, D.F., Wei, Z., Yang, M. (eds) Natural Language Processing and Chinese Computing. NLPCC 2024. Lecture Notes in Computer Science(), vol 15360. Springer, Singapore. https://doi.org/10.1007/978-981-97-9434-8_12
Download citation
DOI: https://doi.org/10.1007/978-981-97-9434-8_12
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-9433-1
Online ISBN: 978-981-97-9434-8
eBook Packages: Computer ScienceComputer Science (R0)