iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-981-97-9434-8_12
EDNER: Edge Detection for Named Entity Recognition | SpringerLink
Skip to main content

EDNER: Edge Detection for Named Entity Recognition

  • Conference paper
  • First Online:
Natural Language Processing and Chinese Computing (NLPCC 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 15360))

  • 32 Accesses

Abstract

The task of Named Entity Recognition (NER) is an important component of information extraction tasks. Currently, span-based approaches are receiving widespread research attention. Despite their success in many aspects, these approaches also suffer from insufficient utilization of non-entity information. In this work, we view the span-based NER task as an edge detection task and propose EDNER (Edge Detection for Named Entity Recognition). In this method, we define the edge representation of text and generate deep representations through a specially designed edge interaction layer, while auxiliary edge contrastive learning and global edge detection task allow the model to fully adapt to the task of edge detection. Our carefully designed convolutional layers and prediction layers extract entity spans by detecting entity edges. Experimental results show that our method outperforms existing state-of-the-art methods and achieves highest F1 scores on four benchmark NER datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12, 2493–2537 (2011)

    Google Scholar 

  2. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  3. Dozat, T., Manning, C.D.: Deep biaffine attention for neural dependency parsing. arXiv preprint arXiv:1611.01734 (2016)

  4. Fan, L., Song, F., Jutamulia, S.: Edge detection with large depth of focus using differential Haar-Gaussian wavelet transform. Optics Commun. 270(2), 169–175 (2007)

    Article  Google Scholar 

  5. Gui, T., et al.: A lexicon-based graph neural network for Chinese NER. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 1040–1050 (2019)

    Google Scholar 

  6. Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural architectures for named entity recognition. arXiv preprint arXiv:1603.01360 (2016)

  7. Levow, G.A.: The third international Chinese language processing bakeoff: word segmentation and named entity recognition. In: Proceedings of the Fifth SIGHAN Workshop on Chinese Language Processing, pp. 108–117 (2006)

    Google Scholar 

  8. Li, J., et al.: Unified named entity recognition as word-word relation classification. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 10965–10973 (2022)

    Google Scholar 

  9. Li, Y., Yu, Y., Qian, T.: Type-aware decomposed framework for few-shot named entity recognition. arXiv preprint arXiv:2302.06397 (2023)

  10. Ma, R., Peng, M., Zhang, Q., Huang, X.: Simplify the usage of lexicon in Chinese NER. arXiv preprint arXiv:1908.05969 (2019)

  11. Ning, J., Yang, Z., Sun, Y., Wang, Z., Lin, H.: OD-RTE: a one-stage object detection framework for relational triple extraction. In: Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 11120–11135 (2023)

    Google Scholar 

  12. Ning, J., Yang, Z., Wang, Z., Sun, Y., Lin, H., Wang, J.: Two languages are better than one: bilingual enhancement for Chinese named entity recognition. In: Proceedings of the 29th International Conference on Computational Linguistics, pp. 2024–2033 (2022)

    Google Scholar 

  13. Ohta, T., Tateisi, Y., Kim, J.D., Mima, H., Tsujii, J.: The GENIA corpus: an annotated research abstract corpus in molecular biology domain. In: Proceedings of the Human Language Technology Conference, pp. 73–77. Citeseer (2002)

    Google Scholar 

  14. Prewitt, J.: Picture Processing and Psychopictorics. Academic Press, New York 3(2), 58–71 (1970)

    Google Scholar 

  15. Sang, E.F., De Meulder, F.: Introduction to the CoNLL-2003 shared task: language-independent named entity recognition. arXiv preprint arxiv: cs/0306050 (2003)

  16. Sekehravani, E.A., Babulak, E., Masoodi, M.: Implementing canny edge detection algorithm for noisy image. Bull. Electr. Eng. Inform. 9(4), 1404–1410 (2020)

    Article  Google Scholar 

  17. Shen, Y., Ma, X., Tan, Z., Zhang, S., Wang, W., Lu, W.: Locate and label: a two-stage identifier for nested named entity recognition. arXiv preprint arXiv:2105.06804 (2021)

  18. Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: DiffusionNER: boundary diffusion for named entity recognition. arXiv preprint arXiv:2305.13298 (2023)

  19. Shen, Y., Wang, X., Tan, Z., Xu, G., Xie, P., Huang, F., Lu, W., Zhuang, Y.: Parallel instance query network for named entity recognition. arXiv preprint arXiv:2203.10545 (2022)

  20. Sobel, I.: Neighborhood coding of binary images for fast contour following and general binary array processing. Comput. Graphics Image Process. 8(1), 127–135 (1978)

    Article  Google Scholar 

  21. Soria, X., Sappa, A., Humanante, P., Akbarinia, A.: Dense extreme inception network for edge detection. Pattern Recogn. 139, 109461 (2023)

    Article  Google Scholar 

  22. Su, Z., et al.: Pixel difference networks for efficient edge detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5117–5127 (2021)

    Google Scholar 

  23. Tan, Z., Shen, Y., Zhang, S., Lu, W., Zhuang, Y.: A sequence-to-set network for nested named entity recognition. arXiv preprint arXiv:2105.08901 (2021)

  24. Wan, J., Ru, D., Zhang, W., Yu, Y.: Nested named entity recognition with span-level graphs. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 892–903 (2022)

    Google Scholar 

  25. Wang, B., Lu, W.: Neural segmental hypergraphs for overlapping mention recognition. arXiv preprint arXiv:1810.01817 (2018)

  26. Wang, Q., Wang, T., Zhang, K.: Image edge detection based on the grey prediction model and discrete wavelet transform. Kybernetes 41(5/6), 643–654 (2012)

    Article  Google Scholar 

  27. Zhang, Y., Yang, J.: Chinese NER using lattice LSTM. arXiv preprint arXiv:1805.02023 (2018)

  28. Zhu, E., Li, J.: Boundary smoothing for named entity recognition. In: Muresan, S., Nakov, P., Villavicencio, A. (eds.) Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 7096–7108. Association for Computational Linguistics, Dublin, Ireland (May 2022). https://doi.org/10.18653/v1/2022.acl-long.490, https://aclanthology.org/2022.acl-long.490

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihao Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gao, L., Yang, Z., Luo, L., Liu, W., Lin, H., Wang, J. (2025). EDNER: Edge Detection for Named Entity Recognition. In: Wong, D.F., Wei, Z., Yang, M. (eds) Natural Language Processing and Chinese Computing. NLPCC 2024. Lecture Notes in Computer Science(), vol 15360. Springer, Singapore. https://doi.org/10.1007/978-981-97-9434-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-9434-8_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-9433-1

  • Online ISBN: 978-981-97-9434-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics