Abstract
A \(\lambda \)-calculus is introduced in which all programs can be evaluated in probabilistic polynomial time and in which there is sufficient structure to represent sequential cryptographic constructions and adversaries for them, even when the latter are oracle-based. A notion of observational equivalence capturing computational indistinguishability and a class of approximate logical relations are then presented, showing that the latter represent a sound proof technique for the former. The work concludes with the presentation of an example of a security proof in which the encryption scheme induced by a pseudorandom function is proven secure against active adversaries in a purely equational style.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abadi, M.: Security protocols: principles and calculi. In: Aldini, A., Gorrieri, R. (eds.) Foundations of Security Analysis and Design IV, pp. 1–23 (2006). https://doi.org/10.1007/978-3-540-74810-6_1
Abramsky, S.: The lazy lambda calculus. In: Research Topics in Functional Programming, pp. 65-116. Addison-Wesley Longman Publishing Co., Inc. (1990)
Accattoli, B., Dal Lago, U.: (Leftmost-outermost) beta reduction is invariant, indeed. Log. Methods Comput. Sci. 12(1) (2016). https://doi.org/10.2168/LMCS-12(1:4)2016
Aguirre, A., Barthe, G., Gaboardi, M., Garg, D., Katsumata, S.Y., Sato, T.: Higher-order probabilistic adversarial computations: categorical semantics and program logics. In: Proceedings of the ICFP 2021, pp. 1–30. ACM (2021). https://doi.org/10.1145/3473598
Aguirre, A., Birkedal, L.: Step-indexed logical relations for countable nondeterminism and probabilistic choice. In: Proceedings of POPL 2023, vol. 7, pp. 33–60. ACM (2023). https://doi.org/10.1145/3571195
Baelde, D., Jacomme, C.: The squirrel prover and its logic. ACM SIGLOG News 11(2), 62–83 (2024). https://doi.org/10.1145/3665453.3665461
Balan, A., Kurz, A., Velebil, J.: Extending set functors to generalised metric spaces. Log. Methods Comput. Sci. 15(1) (2019). https://doi.org/10.23638/LMCS-15(1:5)2019
Baldan, P., Bonchi, F., Kerstan, H., König, B.: Coalgebraic behavioral metrics. Log. Methods Comput. Sci. 14(3) (2018). https://doi.org/10.23638/LMCS-14(3:20)2018
Bana, G., Comon-Lundh, H.: A computationally complete symbolic attacker for equivalence properties. In: Proceedings of the CCS 2014, pp. 609–620 (2014). https://doi.org/10.1145/2660267.2660276
Bellare, M.: A note on negligible functions. J. Cryptol. 15(4), 271–284 (2002). https://doi.org/10.1007/s00145-002-0116-x
Bizjak, A., Birkedal, L.: Step-indexed logical relations for probability. In: Proceedings of FoSSaCS 2015, pp. 279–294. Springer (2015). https://doi.org/10.1007/978-3-662-46678-0_18
van Breugel, F.: The metric monad for probabilistic nondeterminism. Draft available at http://www.cse.yorku.ca/franck/research/drafts/monad.pdf (2005)
Canetti, R., Stoughton, A., Varia, M.: EasyUC: using EasyCrypt to mechanize proofs of universally composable security. In: Proceedings of the CSF 2019, pp. 167–183. IEEE (2019). https://doi.org/10.1109/CSF.2019.00019
Dal Lago, U., Galal, Z., Giusti, G.: On Computational Indistinguishability and Logical Relations (2024). http://arxiv.org/abs/2408.17340
Dal Lago, U., Gavazzo, F.: A relational theory of effects and coeffects. In: Proceedings of the POPL 2022, vol. 6, pp. 1–28. ACM (2022). https://doi.org/10.1145/3498692
Dal Lago, U., Giusti, G.: On session typing, probabilistic polynomial time, and cryptographic experiments. In: Proceedings of the CONCUR 2022, vol. 243, pp. 37:1–37:18 (2022). https://doi.org/10.4230/LIPICS.CONCUR.2022.37
Dal Lago, U., Martini, S.: On constructor rewrite systems and the lambda calculus. Log. Methods Comput. Sci. (2012). https://doi.org/10.1007/978-3-642-02930-1_14
Dal Lago, U., Petit, B.: Linear dependent types in a call-by-value scenario. In: Proceedings of the PPDP 2012, pp. 115–126. ACM (2012). https://doi.org/10.1145/2370776.2370792
Dal Lago, U., Zuppiroli, S., Gabbrielli, M.: Probabilistic recursion theory and implicit computational complexity. Sci. Ann. Comput. Sci. 177–216 (2014). https://doi.org/10.7561/SACS.2014.2.177
Dolev, D., Yao, A.: On the security of public key protocols. IEEE Trans. Inf. Theory 29(2), 198–207 (1983). https://doi.org/10.1109/TIT.1983.1056650
Ehrhard, T., Tasson, C.: Probabilistic call by push value. Log. Methods Comput. Sci. 15(1) (2019). https://doi.org/10.23638/LMCS-15(1:3)2019
Fiore, M., Abadi, M.: Computing symbolic models for verifying cryptographic protocols. In: Proceedings of the CSFW 2001, pp. 160–173. IEEE (2001). https://doi.org/10.1109/CSFW.2001.930144
Gavazzo, F.: Quantitative behavioural reasoning for higher-order effectful programs: applicative distances. In: Proceedings of the LICS 2018, pp. 452–461. ACM (2018). https://doi.org/10.1145/3209108.3209149
Gibbs, A.L., Su, F.E.: On choosing and bounding probability metrics. Int. Stat. Rev. 70(3), 419–435 (2002). https://doi.org/10.2307/1403865
Gifford, D.K., Lucassen, J.M.: Integrating functional and imperative programming. In: Proceedings of the 1986 ACM Conference on LISP and Functional Programming, pp. 28–38. ACM (1986). https://doi.org/10.1145/319838.319848
Girard, J.Y., Scedrov, A., Scott, P.J.: Bounded linear logic: a modular approach to polynomial-time computability. Theoret. Comput. Sci. 97(1), 1–66 (1992). https://doi.org/10.1016/0304-3975(92)90386-T
Goldreich, O.: Foundations of Cryptography. Vol. 1: Basic Tools. Cambridge University Press, Cambridge (2007)
Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984). https://doi.org/10.1016/0022-0000(84)90070-9
Gordon, A.D.: Operational equivalences for untyped and polymorphic object calculi. In: Higher-Order Operational Techniques in Semantics, Publications of the Newton Institute, pp. 9–54. Cambridge University Press (1998)
Goubault-Larrecq, J., Lasota, S., Nowak, D.: Logical relations for monadic types. Math. Struct. Comput. Sci. 1169–1217 (2008). https://doi.org/10.1007/3-540-45793-3_37
Goubault-Larrecq, J., Lasota, S., Nowak, D., Zhang, Y.: Complete lax logical relations for cryptographic lambda-calculi. In: Proceedings of the CSL 2004, pp. 400–414. Springer (2004).https://doi.org/10.1007/978-3-540-30124-0_31
Hofmann, D., Seal, G.J., Tholen, W.: Monoidal Topology: A Categorical Approach to Order, Metric, and Topology. Cambridge University Press (2014)
Hyland, M., Plotkin, G., Power, J.: Combining effects: sum and tensor. Theoret. Comput. Sci. 357(1), 70–99 (2006). https://doi.org/10.1016/j.tcs.2006.03.013
Impagliazzo, R., Kapron, B.M.: Logics for reasoning about cryptographic constructions. J. Comput. Syst. Sci. 72(2), 286–320 (2006). https://doi.org/10.1016/j.jcss.2005.06.008
Kantorovich, L.V.: On the translocation of masses. J. Math. Sci. 133(4), 1381–1382 (2006). https://doi.org/10.1007/s10958-006-0049-2
Katz, J., Lindell, Y.: Introduction to Modern Cryptography. CRC Press (2020)
Lassen, S.B.: Relational reasoning about contexts. In: Higher-Order Operational Techniques in Semantics, Publications of the Newton Institute, vol. 91, pp. 91–136. Cambridge University Press (1998)
Leroy, X., Grall, H.: Coinductive big-step operational semantics. Inf. Comput. 207(2), 284–304 (2009). https://doi.org/10.1016/j.ic.2007.12.004
Levy, P.B.: Call-by-Push-Value: A Functional/Imperative Synthesis, vol. 2. Springer Science & Business Media (2012)
Mardare, R., Panangaden, P., Plotkin, G.: Quantitative algebraic reasoning. In: Proceedings of the LICS 2016, pp. 700–709. ACM (2016). https://doi.org/10.1145/2933575.2934518
Mitchell, J., Mitchell, M., Scedrov, A.: A linguistic characterization of bounded oracle computation and probabilistic polynomial time. In: Proceedings of the SFCS 1998, pp. 725–733. IEEE (1998). https://doi.org/10.1109/SFCS.1998.743523
Mitchell, J.C., Ramanathan, A., Scedrov, A., Teague, V.: A probabilistic polynomial-time process calculus for the analysis of cryptographic protocols. Theoret. Comput. Sci. 353(1–3) (2006). https://doi.org/10.1016/j.tcs.2005.10.044
Mitchell, J.C.: Multiset rewriting and security protocol analysis. In: Proceedings of the RTA 2002, pp. 19–22. Springer (2002). https://doi.org/10.1007/3-540-45610-4_2
Mitchell, J.C., Scedrov, A.: Notes on sconing and relators. In: Proceedings of the CSL 1992, pp. 352–378. Springer (1992). https://doi.org/10.1007/3-540-56992-8_21
Nowak, D., Zhang, Y.: A calculus for game-based security proofs. In: Proceedings of the ProvSec 2010. Springer (2010). https://doi.org/10.1007/978-3-642-16280-0_3
Reed, J., Pierce, B.C.: Distance makes the types grow stronger: a calculus for differential privacy. In: Proceedings of the ICFP 2010, pp. 157–168. ACM (2010). https://doi.org/10.1145/1863543.1863568
Rosenthal, K.I.: Quantales and Their Applications. Wiley (1990)
Sangiorgi, D., Rutten, J.: Advanced Topics in Bisimulation and Coinduction. Cambridge University Press (2011)
Shoup, V.: Sequences of games: a tool for taming complexity in security proofs. IACR Cryptol. ePrint Arch., p. 332 (2004). http://eprint.iacr.org/2004/332
Statman, R.: Logical relations and the typed \(\lambda \)-calculus. Inf. Control 65(2–3), 85–97 (1985). https://doi.org/10.1016/S0019-9958(85)80001-2
Tait, W.W.: Intensional interpretations of functionals of finite type I. J. Symbol. Log. 32(2), 198–212 (1967). https://doi.org/10.2307/2271658
Wild, P., Schröder, L.: Characteristic logics for behavioural hemimetrics via fuzzy lax extensions. Log. Methods Comput. Sci. (2022). https://doi.org/10.46298/lmcs-18(2:19)2022
Acknowledgements
The first two authors are partially supported by the MUR FARE project CAFFEINE, and by the ANR PRC project PPS (ANR-19-CE48-0014). The third author is partially supported by Fondation CFM.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Lago, U.D., Galal, Z., Giusti, G. (2025). On Computational Indistinguishability and Logical Relations. In: Kiselyov, O. (eds) Programming Languages and Systems. APLAS 2024. Lecture Notes in Computer Science, vol 15194. Springer, Singapore. https://doi.org/10.1007/978-981-97-8943-6_12
Download citation
DOI: https://doi.org/10.1007/978-981-97-8943-6_12
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-8942-9
Online ISBN: 978-981-97-8943-6
eBook Packages: Computer ScienceComputer Science (R0)