iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-981-97-5669-8_12
ICLFP-NMT: Neural Machine Translation for ICL Flexible Prompt | SpringerLink
Skip to main content

ICLFP-NMT: Neural Machine Translation for ICL Flexible Prompt

  • Conference paper
  • First Online:
Advanced Intelligent Computing Technology and Applications (ICIC 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14877))

Included in the following conference series:

  • 309 Accesses

Abstract

Common LLMs Prompt-based Neural Machine Translation methods use discrete prompt words and cured template styles, which are not conducive to fine-tuning of LLMs and contextual feature extraction. In addition, the selection of prompt instances is also a major factor affecting Prompt-NMT performance. Therefore, we propose a flexible prompt method. Specifically, we construct a dual encoder-based soft prototype, which combines spatial clustering and maximum margin constraints to generate prompt instances. Meanwhile, this paper gives a virtual template generation method, which utilizes a pseudo-prompt encoder to adapt to the current translation episodic and build a virtual prompt template, it alleviates the instance selection problem in the ICL method and also improves the template style curing problem. In the translation task of CCMT, the BLEU scores of our model are significantly improved compared with the baseline system, which fully verifies the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://sc.cipsc.org.cn/mt/conference/2022/.

  2. 2.

    https://github.com/THUDM/ChatGLM-130B.

  3. 3.

    https://github.com/salesforce/nonauto-nmt.

  4. 4.

    https://github.com/facebookresearch/fastText.

  5. 5.

    We improve LaBSE to obtain soft prototypes based on sentence embedding.

References

  1. Zeng, A., Liu, X., Du, Z., et al.: GLM-130B: an open bilingual pre-trained model. In: ICLR 2023, Kigali, Rwanda, 1–5 May 2023

    Google Scholar 

  2. Zhang, B., Haddow, B., Birch, A.: Prompting large language model for machine translation: a case study. In: International Conference on Machine Learning, ICML 2023, 23–29 July 2023, Honolulu, Hawaii, USA. Proceedings of Machine Learning Research, vol. 202, pp. 41092–41110 (2023)

    Google Scholar 

  3. Cai, D., Wang, Y., Li, H., et al.: Neural machine translation with monolingual translation memory. In: ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual Event, 1–6 August 2021, pp. 7307–7318 (2021)

    Google Scholar 

  4. Reheman, A., Zhou, T., Luo, Y., et al.: Prompting neural machine translation with translation memories. In: AAAI 2023, 7–14 February 2023, pp.13519–13527 (2023)

    Google Scholar 

  5. Vilar, D., Freitag, M., Cherry, C., et al.: Prompting palm for translation: assessing strategies and performance. In: ACL 2023, Toronto, Canada, 9–14 July 2023, pp. 15406–15427 (2023)

    Google Scholar 

  6. Agrawal, S., Zhou, C., Lewis, M., et al.: In-context examples selection for machine translation. In: Findings of the Association for Computational Linguistics: ACL 2023, Toronto, Canada, 9–14 July 2023, pp. 8857–8873 (2023)

    Google Scholar 

  7. Feng, F., Yang, Y., Cer, D., et al.: Language-agnostic BERT sentence embedding. In: ACL 2022, Dublin, Ireland, 22–27 May 2022, pp. 878–891 (2022)

    Google Scholar 

  8. Schick, T., Schutze, H.: Exploiting cloze-questions for few-shot text classification and natural language inference. In: EACL 2021, Online, 19–23 April 2021, pp. 255–269 (2021)

    Google Scholar 

  9. Han, X., Zhao, W., Ding, N., et al.: PTR: prompt tuning with rules for text classification. AI Open 3, 182–192 (2022)

    Article  Google Scholar 

  10. Shin, T., Razeghi, Y., Logan IV, R.L., et al.: Autoprompt: eliciting knowledge from language models with automatically generated prompts. In: EMNLP2020, Online, 16–20 November 2020, pp. 4222–4235 (2020)

    Google Scholar 

  11. Liu, X., Zheng, Y., Du, Z., et al.: GPT understands, too. CoRR abs/2103.10385 (2021)

    Google Scholar 

  12. Conneau, A., Lample, G.: Cross-lingual language model pretraining. In: NeurIPS 2019, 8–14 December 2019, Vancouver, BC, Canada, pp. 7057–7067 (2019)

    Google Scholar 

  13. Song, K., Tan, X., Qin, T., et al.: MASS: masked sequence to sequence pre-training for language generation. In: ICML 2019, 9–15 June 2019, Long Beach, California, USA. Proceedings of Machine Learning Research, vol. 97, pp. 5926–5936 (2019)

    Google Scholar 

  14. Liu, Y., Gu, J., Goyal, N., et al.: Multilingual denoising pre-training for neural machine translation. Trans. Assoc. Comput. Linguist. 8, 726–742 (2020)

    Article  Google Scholar 

  15. Lin, Z., Pan, X., Wang, M., et al.: Pre-training multilingual neural machine translation by leveraging alignment information. In: EMNLP 2020, Online, 16–20 November 2020, pp. 2649–2663 (2020)

    Google Scholar 

  16. Muennighoff, N., Wang, T., Sutawika, L., et al.: Crosslingual generalization through multitask finetuning. In: ACL 2023, Toronto, Canada, 9–14 July 2023, pp. 15991–16111 (2023)

    Google Scholar 

  17. Costa-jussa, M.R., Cross, J.H., et al.: No language left behind: scaling human-centered machine translation. CoRR abs/2207.04672 (2022)

    Google Scholar 

  18. Vaswani, A., Shazeer, N., Parmar, N., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, 4–9 December 2017, Long Beach, CA, USA, pp. 5998–6008 (2017)

    Google Scholar 

  19. OpenAI: GPT-4 technical report. CoRR abs/2303.08774 (2023)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhong Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, N., Wu, W., Ji, Y., Liu, Y., Lu, M., Liu, N. (2024). ICLFP-NMT: Neural Machine Translation for ICL Flexible Prompt. In: Huang, DS., Si, Z., Zhang, Q. (eds) Advanced Intelligent Computing Technology and Applications. ICIC 2024. Lecture Notes in Computer Science(), vol 14877. Springer, Singapore. https://doi.org/10.1007/978-981-97-5669-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5669-8_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5668-1

  • Online ISBN: 978-981-97-5669-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics