iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-981-97-0903-8_13
Imputation of Compound Property Assay Data Using a Gene Expression Programming-Based Method | SpringerLink
Skip to main content

Imputation of Compound Property Assay Data Using a Gene Expression Programming-Based Method

  • Conference paper
  • First Online:
Applied Intelligence (ICAI 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 2014))

Included in the following conference series:

  • 357 Accesses

Abstract

Compound property assays are an important part of drug development, but incomplete data may occur for a variety of reasons. To deal with these incomplete data and improve the success rate of drug development, researchers often need to effectively impute the missing data. Therefore, this paper proposes a gene expression programming-based method, called GEP-CPI, for imputing missing compound property assay data. In GEP-CPI, the missing data imputation model is expressed by the parse tree of a chromosome, and then the optimal missing data imputation model is mined by iterative evolution of the chromosome population. Experimental results on three compound property assay related datasets demonstrates that the proposed method generally outperforms the state-of-the-art methods in imputing missing data of compound property assays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang, H., Zhou, S., Zhang, K., Guan, J.: Residual similarity based conditional independence test and its application in causal discovery. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, no. 5, pp. 5942–5949 (2022)

    Google Scholar 

  2. Zhang, H., Zhou, S., Yan, C., Guan, J., Wang, X.: Recursively learning causal structures using regression-based conditional independence test. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, pp. 3108–3115 (2019)

    Google Scholar 

  3. Zhang, H., Zhou, S., Yan, C., Wang, X., Zhang, J., Huan, J.: Learning causal structures based on divide and conquer. IEEE Trans. Cybern. 52(5), 3232–3243 (2022)

    Article  Google Scholar 

  4. Peng, Y., Zhang, Z., Jiang, Q., Guan, J., Zhou, S.: TOP: towards better toxicity prediction by deep molecular representation learning. In: 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 318–325. IEEE (2019)

    Google Scholar 

  5. Peng, Y., Zhang, Z., Jiang, Q., Guan, J., Zhou, S.: TOP: A deep mixture representation learning method for boosting molecular toxicity prediction. Methods 179(1), 55–64 (2020)

    Article  Google Scholar 

  6. Peng, Y., Lin, Y., Jing, X., Zhang, H., Huang, Y., Luo, G.: Enhanced graph isomorphism network for molecular ADMET properties prediction. IEEE Access 8(1), 168344–168360 (2020)

    Article  Google Scholar 

  7. Little, R., Rubin, D.: Statistical Analysis with Missing Data, 2nd edn. Wiley, Hoboken (2019)

    Google Scholar 

  8. Liu, K., Hu, X., Zhou, H.: Feature analyses and modeling of lithium-ion battery manufacturing based on random forest classification. IEEE/ASME Trans. Mechatron. 6, 2944–2955 (2021)

    Article  Google Scholar 

  9. Kim, E., Bae, G., Ahn, G.: A study on the imputation solution for missing speed data on UTIS by using adaptive k-NN algorithm. J. Korea Inst. Intell. Transp. Syst. 3, 66–77 (2014)

    Article  Google Scholar 

  10. Sahoo, A., Ghose, D.: Imputation of missing precipitation data using KNN, SOM, RF, and FNN. Soft. Comput. 12, 5919–5936 (2022)

    Article  Google Scholar 

  11. Ma, T., Hu, Y., Wang, J.: A novel vegetation index approach using sentinel-2 data and random forest algorithm for estimating forest stock volume in the Helan mountains, Ningxia, China. Remote Sens. 15(7), 1853 (2023)

    Google Scholar 

  12. Zushida, K., Haohao, Z., Shimamur, H.: Application and analysis of random forest algorithm for estimating lawn grass lengths in robotic lawn mower. Int. J. Mech. Eng. Appl. (1), 6 (2021)

    Google Scholar 

  13. Rahman, M., Islam, M.: Missing value imputation using decision trees and decision forests by splitting and merging records: two novel techniques. Knowl.-Based Syst. 53, 51–65 (2013)

    Article  Google Scholar 

  14. Che, Z., Purushotham, S., Cho, K.: Recurrent neural networks for multivariate time series with missing values. Sci. Rep. 8(1), 6085 (2018)

    Article  Google Scholar 

  15. Phiwhorm, K., Saikaew, C., Leung, C.: Adaptive multiple imputations of missing values using the class center. J. Big Data 9(1), 52 (2022)

    Article  Google Scholar 

  16. Chen, J., Huang, H., Tian, F.: A selective bayes classifier for classifying incomplete data based on gain ratio. Knowl.-Based Syst. 21(7), 530–534 (2008)

    Article  Google Scholar 

  17. Johnson, T., Isaac, N., Paviolo, A.: Handling missing values in trait data. Glob. Ecol. Biogeogr. 30(1), 51–62 (2021)

    Article  Google Scholar 

  18. Fei, K., Li, Q., Zhu, C.: Non-technical losses detection using missing values’ pattern and neural architecture search. Int. J. Electr. Power Energy Syst. 134, 107410 (2022)

    Article  Google Scholar 

  19. Dinh, D., Huynh, V., Sriboonchitta, S.: Clustering mixed numerical and categorical data with missing values. Inf. Sci. 571, 418–442 (2021)

    Article  MathSciNet  Google Scholar 

  20. Zhang, Y., Wang, Y., Gong, D.: Clustering-guided particle swarm feature selection algorithm for high-dimensional imbalanced data with missing values. IEEE Trans. Evol. Comput. 26(4), 616–630 (2021)

    Article  Google Scholar 

  21. Di, N.: Missing data analysis with fuzzy C-Means: a study of its application in a psychological scenario. Expert Syst. Appl. 6, 6793–6797 (2011)

    Google Scholar 

  22. Wang, J., Li, D., Zhang, H.: An improvement of support vector machine imputation algorithm based on multiple iteration and grid search strategies. In: 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT), pp. 538–543 (2020)

    Google Scholar 

  23. Kengkanna, A., Ohue, M.: Enhancing Model Learning and Interpretation Using Multiple Molecular Graph Representations for Compound Property and Activity Prediction. arXiv preprint arXiv:2304.06253 (2023)

  24. Irwin, B., Levell, J., Whitehead, T.: Practical applications of deep learning to impute heterogeneous drug discovery data. J. Chem. Inf. Model. 6, 2848–2857 (2020)

    Article  Google Scholar 

  25. Whitehead, T., Irwin, B., Hunt, P.: Imputation of assay bioactivity data using deep learning. J. Chem. Inf. Model. 3, 1197–1204 (2019)

    Article  Google Scholar 

  26. Whitehead, T., Irwin, B., Hunt, P.: Imputing compound activities based on sparse and noisy data. In: The American Chemical Society (ACS), p. 257 (2019)

    Google Scholar 

  27. Sarir, P., Chen, J., Asteris, P.: Developing GEP tree-based, neuro-swarm, and whale optimization models for evaluation of bearing capacity of concrete-filled steel tube columns. Eng. Comput. 37, 1–19 (2021)

    Article  Google Scholar 

  28. Ren, L., Wang, N., Pang, W.: Modeling and monitoring the material removal rate of abrasive belt grinding based on vision measurement and the gene expression programming (GEP) algorithm. Int. J. Adv. Manuf. Technol. 120(1–2), 385–401 (2022)

    Article  Google Scholar 

  29. Ferreira, C.: Gene expression programming: a new adaptive algorithm for solving problems. Complex Syst. (2), 87–129 (2001)

    Google Scholar 

  30. Changan, Y., Yuzhong, P., Xiao, Q.: Principles and Applications of Gene Expression Programming Algorithm. China Science Publishing, Beijing (2010)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (#62262044), and Natural Science Foundation of Guangxi Province (#2023GXNSFAA026027), the Project of Guangxi Chinese medicine multidisciplinary crossover innovation team (#GZKJ2311).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanmei Lin or Yuzhong Peng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, H., Lin, Y., Chen, N., Peng, Y. (2024). Imputation of Compound Property Assay Data Using a Gene Expression Programming-Based Method. In: Huang, DS., Premaratne, P., Yuan, C. (eds) Applied Intelligence. ICAI 2023. Communications in Computer and Information Science, vol 2014. Springer, Singapore. https://doi.org/10.1007/978-981-97-0903-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0903-8_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0902-1

  • Online ISBN: 978-981-97-0903-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics