Abstract
In this paper, an efficient design of finite impulse response (FIR) filter is presented with improved fitness function using cuckoo search algorithm (CSA). CSA is recently proposed evolutionary technique (ET), which has efficient ability of exploration and therefore used in FIR filter design. The fitness function is constructed in the frequency domain as a mean squared error (MSE) between the designed and desired response. In this fitness function, tolerable limits for magnitude response in passband and stopband region have been embedded, which helps in gaining the controlled ripple in irrespective bands. The designed filters are realized on general-purpose microcontroller using Arduino platform and filter performance is tested using fidelity parameters, which are; passband error (Erpb), stopband error (Ersb), and minimum stopband attenuation (As). The exhaustive experimental analysis confirms that proposed methodology is statically stable and obtains improved fidelity parameters when compared with previous state of the art.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Schlichthärle, D.: Digital Filters—Basics and Design, 2nd edn. Springer, Berlin Heidelberg (2000)
Çiloǧlu, T.: An efficient local search method guided by gradient information for discrete coefficient FIR filter design. Sig. Process. 82(10), 1337–1350 (2002)
Man, K.F., Tang, K.S., Kwong, S.: Genetic algorithms: concepts and applications in engineering design. IEEE Trans. Ind. Electron. 43(5), 519–534 (1996)
N. Agrawal, A. Kumar, V. Bajaj, G.K. Singh, Design of bandpass and bandstop infinite impulse response filters using fractional derivative. IEEE Trans. Ind. Electron. 1–11 (2018). https://doi.org/10.1109/tie.2018.2831184
Reddy, K.S., Sahoo, S.K.: An approach for FIR filter coefficient optimization using differential evolution algorithm. AEU – Int. J. Electron. Commun. 69(1), 101–108 (2015)
Aggarwal, A., Rawat, T.K., Upadhyay, D.K.: Design of optimal digital FIR filters using evolutionary and swarm optimization techniques. AEU – Int. J. Electron. Commun. 70(4), 373–385 (2016)
Agrawal, N., Kumar, A., Bajaj, V.: Design of digital IIR filter with low quantization error using hybrid optimization technique. Soft. Comput. 22(9), 2953–2971 (2017)
Agrawal, N., Kumar, A., Bajaj, V., Singh, G.K.: High order stable infinite impulse response filter design using cuckoo search algorithm. Int. J. Autom. Comput. 14(5), 589–602 (2017)
Tang, K.-S., Man, K.-F., Kwong, S., Liu, Z.-F.: Design and optimization of IIR filter structure using hierarchical genetic algorithms. IEEE Trans. Ind. Electron. 45(3), 481–487 (1998)
N. Karaboga, B. Cetinkaya, Design of minimum phase digital IIR filters by using genetic algorithm, in 6th Proceedings of the Nordic Signal Processing Symposium, NORSIG 2004 (IEEE, Espoo, 2004), pp. 29–32
Yu, Y., Xinjie, Y.: Cooperative coevolutionary genetic algorithm for digital IIR filter design. IEEE Trans. Ind. Electron. 54(3), 1311–1318 (2007)
Ababneh, J.I., Bataineh, M.H.: Linear phase FIR filter design using particle swarm optimization and genetic algorithms. Digit. Signal Proc. 18(4), 657–668 (2008)
Sharma, I., Kuldeep, B., Kumar, A., Singh, V.K.: Performance of swarm based optimization techniques for designing digital FIR filter: a comparative study. Eng. Sci. Technol. Int. J. 19(3), 1564–1572 (2016)
Karaboga, N., Kalinli, A., Karaboga, D.: Designing digital IIR filters using ant colony optimisation algorithm. Eng. Appl. Artif. Intell. 17(3), 301–309 (2004)
B. Luitel, G.K. Venayagamoorthy, Differential evolution particle swarm optimization for digital filter design, in 2008 IEEE Congress on Evolutionary Computation (IEEE, Hong Kong, 2008), pp. 3954–3961
Agrawal, N., Kumar, A., Bajaj, V., Lee, H.-N.: Controlled ripple based design of digital IIR filter, in 21st IEEE International Conference on Digital Signal Processing (DSP) (IEEE, Beijing, 2016), pp. 627–631
Ahirwal, M.K., Kumar, A., Singh, G.K.: EEG/ERP adaptive noise canceller design with controlled search space (CSS) approach in cuckoo and other optimization algorithms. IEEE/ACM Trans. Comput. Biol. Bioinforma 10(6), 1491–1504 (2013)
Agrawal, N., Kumar, A., Bajaj, V.: Digital IIR filter design with controlled ripple using cuckoo search algorithm, in 2016 International Conference on Signal and Information Processing (IConSIP) (IEEE, Vishnupuri, 2016), pp. 1–5
Kumar, M., Rawat, T.K.: Optimal fractional delay-IIR filter design using cuckoo search algorithm. ISA Trans. 59, 39–54 (2015)
Gotmare, A., Patidar, R., George, N.V.: Nonlinear system identification using a cuckoo search optimized adaptive Hammerstein model. Expert Syst. Appl. 42(5), 2538–2546 (2015)
Liu, G., Li, Y., He, G.: Design of digital FIR filters using differential evolution algorithm based on reserved genes, in IEEE Congress on Evolutionary Computation (IEEE, Barcelona, 2010), pp. 1–7
Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization: an overview. Swarm Intell. 1(1), 33–57 (2007)
Rafi, S.M., Kumar, A., Singh, G.K.: An improved particle swarm optimization method for multirate filter bank design. J. Franklin Inst. 350(4), 757–769 (2013)
Sidhu, D.S., Dhillon, J.S., Kaur, D.: Hybrid heuristic search method for design of digital IIR filter with conflicting objectives. Soft. Comput. 21(12), 3461–3476 (2016)
Gotmare, A., Bhattacharjee, S.S., Patidar, R., George, N.V.: Swarm and evolutionary computing algorithms for system identification and filter design: a comprehensive review. Swarm Evol. Comput. 32, 68–84 (2017)
Agrawal, N., Kumar, A., Bajaj, V.: A new design method for stable IIR filters with nearly linear-phase response based on fractional derivative and swarm intelligence. IEEE Trans. Emerg. Top. Comput. Intell. 1(6), 464–477 (2017)
Baderia, K., Kumar, A., Singh, G.K.: Hybrid method for designing digital FIR filters based on fractional derivative constraints. ISA Trans. 58, 493–508 (2015)
Saha, S.K., Ghoshal, S.P., Kar, R., Mandal, D.: Cat swarm optimization algorithm for optimal linear phase FIR filter design. ISA Trans. 52(6), 781–794 (2013)
Dwivedi, A.K., Ghosh, S., Londhe, N.D.: Low-power FIR filter design using hybrid artificial bee colony algorithm with experimental validation over FPGA. Circuits Syst. Signal Process 36(1), 156–180 (2017)
Acknowledgements
This work is supported in part by the Department of Science and Technology, Govt. of India under Grant No. SB/S3IEECE/0249/2016.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Kumar, A., Agrawal, N., Sharma, I. (2020). Design of Finite Impulse Response Filter with Controlled Ripple Using Cuckoo Search Algorithm. In: Chaudhuri, B., Nakagawa, M., Khanna, P., Kumar, S. (eds) Proceedings of 3rd International Conference on Computer Vision and Image Processing. Advances in Intelligent Systems and Computing, vol 1024. Springer, Singapore. https://doi.org/10.1007/978-981-32-9291-8_37
Download citation
DOI: https://doi.org/10.1007/978-981-32-9291-8_37
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-32-9290-1
Online ISBN: 978-981-32-9291-8
eBook Packages: EngineeringEngineering (R0)