Abstract
Soon after its inception in 2009, Bitcoin was used as a tool by malicious attackers who exploit its pseudo-anonymity to establish untraceable frauds. Recently, several Bitcoin users and institutions have confirmed that thousands of Bitcoins were lost due to the failure to implement a fraud detection system, causing significant damage to individuals or institutions and resulting in bankruptcy. The anonymous nature of the Bitcoin system makes it a desirable option for malicious people to carry out illegal activities, making it difficult for law enforcement to detect suspicious behavior and making the current fraud detection techniques impractical. Thus, identifying illegal activities becomes an important factor to protect the reputation of the Bitcoin system. In this paper, we propose a model to identify illegal transactions in the Bitcoin system. Firstly, we collect illegal addresses for data labeling purposes from different sources such as online public bitcoin forums and related datasets from previous papers and then verify them with a raw Bitcoin dataset. Secondly, we introduce new types of features by using a time-based approach to segment transactions into time slices over a period in addition to the most meaningful features of the prior studies. Thirdly, we evaluate the proposed model on five popular supervised classifiers (KNN, SVM, RF, XGB, and KNN). Finally, this paper considers the problem of class imbalance and attained better optimization when using an adaptive oversampling technique (ADASYN). Results obtained from this study demonstrate that RF and XGB outperform KNN, SVM, and NN in terms of detection rate.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Al-Hashedi, K.G., Magalingam, P.: Financial fraud detection applying data mining techniques: a comprehensive review from 2009 to 2019. Comput. Sci. Rev. 40, 100402 (2021). https://doi.org/10.1016/j.cosrev.2021.100402
Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
Khalilov, M.C.K., Levi, A.: A survey on anonymity and privacy in Bitcoin-like digital cash systems. IEEE Commun. Surv. Tutorials (2018)
Irwin, A.S., Turner, A.B.: Illicit Bitcoin transactions: challenges in getting to the who, what, when and where. J. Money Laundering Control (2018)
Hill, A.: Bitcoin: Is Cryptocurrency Viable? (2014)
Meiklejohn, S., et al.: A fistful of Bitcoins: characterizing payments among men with no names. In: Proceedings of the 2013 Conference on Internet Measurement Conference, pp. 127–140. ACM (2013)
Horst, L.V.D., Choo, K.K.R., Le-Khac, N.A.: Process memory investigation of the Bitcoin clients electrum and Bitcoin core. IEEE Access 5, 22385–22398 (2017). https://doi.org/10.1109/ACCESS.2017.2759766
Christin, N.: Traveling the silk road: a measurement analysis of a large anonymous online marketplace. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 213–224. ACM (2013)
Baravalle, A., Lopez, M.S., Lee, S.W.: Mining the dark web: drugs and fake ids. In: 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW), pp. 350–356 (2016)
Monamo, P., Marivate, V., Twala, B.: Unsupervised learning for robust Bitcoin fraud detection. In: Information Security for South Africa (ISSA), pp. 129–134. IEEE (2016)
Vasek, M., Thornton, M., Moore, T.: Empirical analysis of denial-of-service attacks in the Bitcoin ecosystem. In: Böhme, R., Brenner, M., Moore, T., Smith, M. (eds.) FC 2014. LNCS, vol. 8438, pp. 57–71. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44774-1_5
Walch, A.: The Bitcoin blockchain as financial market infrastructure: a consideration of operational risk. NYUJ Legis. Pub. Pol’y 18, 837 (2015)
Tu, K.V., Meredith, M.W.: Rethinking virtual currency regulation in the Bitcoin age. Wash. L. Rev. 90, 271 (2015)
Zambre, D., Shah, A.: Analysis of Bitcoin network dataset for fraud. Unpublished Report (2013)
Jobse, F.: Detecting suspicious behavior in the Bitcoin network. Tilburg University (2017)
Möser, M., Böhme, R., Breuker, D.: Towards risk scoring of Bitcoin transactions. In: Böhme, R., Brenner, M., Moore, T., Smith, M. (eds.) FC 2014. LNCS, vol. 8438, pp. 16–32. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44774-1_2
Marcin, S.I.: Bitcoin live: scalable system for detecting Bitcoin network behaviors in real time (2015)
Li, Y., Cai, Y., Tian, H., Xue, G., Zheng, Z.: Identifying illicit addresses in Bitcoin network. In: Zheng, Z., Dai, H.-N., Fu, X., Chen, B. (eds.) BlockSys 2020. CCIS, vol. 1267, pp. 99–111. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-9213-3_8
Pham, T., Lee, S.: Anomaly detection in Bitcoin network using unsupervised learning methods. arXiv preprint arXiv:1611.03941 (2016)
Pham, T., Lee, S.: Anomaly Detection in the Bitcoin System-A Network Perspective. arXiv preprint arXiv:1611.03942 (2016)
Monamo, P.M., Marivate, V., Twala, B.: A multifaceted approach to Bitcoin fraud detection: global and local outliers. In: 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 188–194 IEEE (2016)
Bitcoin Abuse: Bitcoin Abuse Database (2021). Accessed 1 July 2021
Turner, A., Irwin, A.S.M.: Bitcoin transactions: a digital discovery of illicit activity on the blockchain. J. Finan. Crime (2018)
Nerurkar, P., Bhirud, S., Patel, D., Ludinard, R., Busnel, Y., Kumari, S.: Supervised learning model for Identifying illegal activities in Bitcoin. Appl. Intell. 51(6), 3824–3843 (2021)
Yang, L., Dong, X., Xing, S., Zheng, J., Gu, X., Song, X.: An abnormal transaction detection mechanim on Bitcoin. In: 2019 International Conference on Networking and Network Applications (NaNA), pp. 452–457 IEEE (2019)
Zarpelão, B.B., Miani, R.S., Rajarajan, M.: Detection of Bitcoin-based botnets using a one-class classifier. In: Blazy, O., Yeun, C.Y. (eds.) WISTP 2018. LNCS, vol. 11469, pp. 174–189. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20074-9_13
Liao, K., Zhao, Z., Doupé, A., Ahn, G.-J.: Behind closed doors: measurement and analysis of CryptoLocker ransoms in Bitcoin. In: 2016 APWG Symposium on Electronic Crime Research (eCrime), pp. 1–13. IEEE (2016)
Zhang, Z., Zhou, T., Xie, Z.: BITSCOPE: scaling Bitcoin address deanonymization using multi-resolution clustering. In: Proceedings of the 51st Hawaii International Conference on System Sciences (2018)
Bartoletti, M., Pes, B., Serusi, S.: Data mining for detecting Bitcoin Ponzi schemes. In: 2018 Crypto Valley Conference on Blockchain Technology (CVCBT), pp. 75–84. IEEE (2018)
Lin, Y.-J., Wu, P.-W., Hsu, C.-H., Tu, I.-P., Liao, S.-W.: An evaluation of Bitcoin address classification based on transaction history summarization. In: 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), pp. 302–310. IEEE (2019)
Janze, C.: Are cryptocurrencies criminals best friends? Examining the co-evolution of Bitcoin and darknet markets (2017)
Böhme, R., Christin, N., Edelman, B., Moore, T.: Bitcoin: economics, technology, and governance. J. Econ. Perspect. 29(2), 213–238 (2015)
Conti, M., Kumar, S., Lal, C., Ruj, S.: A survey on security and privacy issues of Bitcoin. IEEE Commun. Surv. Tutorials (2018)
Yin, H.S., Vatrapu, R.: A first estimation of the proportion of cybercriminal entities in the Bitcoin ecosystem using supervised machine learning. In: 2017 IEEE International Conference on Big Data (Big Data), pp. 3690–3699. IEEE (2017)
Kroll, J.A., Davey, I.C., Felten, E.W.: The economics of Bitcoin mining, or Bitcoin in the presence of adversaries. In: Proceedings of WEIS, p. 11 (2013)
Courtois, N.T., Bahack, L.: On subversive miner strategies and block withholding attack in Bitcoin digital currency. arXiv preprint arXiv:1402.1718 (2014)
Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. Commun. ACM 61(7), 95–102 (2018)
Bahack, L.: Theoretical Bitcoin Attacks with less than Half of the Computational Power (draft). arXiv preprint arXiv:1312.7013 (2013)
Rosenfeld, M.: Analysis of Bitcoin pooled mining reward systems. arXiv preprint arXiv:1112.4980 (2011)
Bag, S., Ruj, S., Sakurai, K.: Bitcoin block withholding attack: analysis and mitigation. IEEE Trans. Inf. Forensics Secur. 12(8), 1967–1978 (2017)
Karame, G.O., Androulaki, E., Capkun, S.: Double-spending fast payments in Bitcoin. In: Proceedings of the 2012 ACM Conference on Computer and Communications Security, pp. 906–917. ACM (2012)
Decker, C., Wattenhofer, R.: Bitcoin transaction malleability and MtGox. In: Kutyłowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8713, pp. 313–326. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11212-1_18
Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, Ł: On the malleability of Bitcoin transactions. In: Brenner, M., Christin, N., Johnson, B., Rohloff, K. (eds.) FC 2015. LNCS, vol. 8976, pp. 1–18. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48051-9_1
Johnson, B., Laszka, A., Grossklags, J., Vasek, M., Moore, T.: Game-theoretic analysis of DDoS attacks against Bitcoin mining pools. In: Böhme, R., Brenner, M., Moore, T., Smith, M. (eds.) Financial Cryptography and Data Security, pp. 72–86. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44774-1_6
Kondor, D., Csabai, I., Szüle, J., Pósfai, M., Vattay, G.: Inferring the interplay between network structure and market effects in Bitcoin. New J. Phys. 16(12), 125003 (2014)
Neo4j Graph Platform: Neo4j Graph Platform – The Leader in Graph Databases (2021). Accessed 1 June 2021
Magalingam, P., Rao, A., Davis, S.: Identifying a criminal’s network of trust. In: 2014 Tenth International Conference on Signal-Image Technology and Internet-Based Systems, pp. 309–316 (2014)
Paquet-Clouston, M., Haslhofer, B., Dupont, B.: Ransomware payments in the Bitcoin ecosystem. J. Cybersecur. 5(1), tyz003 (2019)
Weber, M., et al.: Anti-money laundering in Bitcoin: experimenting with graph convolutional networks for financial forensics. arXiv preprint arXiv:1908.02591 (2019)
Bahnsen, A.C., Aouada, D., Stojanovic, A., Ottersten, B.: Detecting credit card fraud using periodic features. In: 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA), pp. 208–213. IEEE (2015)
Bahnsen, A.C., Aouada, D., Stojanovic, A., Ottersten, B.: Feature engineering strategies for credit card fraud detection. Expert Syst. Appl. 51, 134–142 (2016)
Lim, W.-Y., Sachan, A., Thing, V.: Conditional weighted transaction aggregation for credit card fraud detection. In: Peterson, G., Shenoi, S. (eds.) DigitalForensics 2014. IAICT, vol. 433, pp. 3–16. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44952-3_1
Ke, G., et al.: LightGBM: a highly efficient gradient boosting decision tree. In: Advances in Neural Information Processing Systems, vol. 30, pp. 3146–3154 (2017)
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
Hearst, M.A., Dumais, S.T., Osuna, E., Platt, J., Scholkopf, B.: Support vector machines. IEEE Intell. Syst. Appl. 13(4), 18–28 (1998)
Haykin, S., Network, N.: A comprehensive foundation. Neural Netw. 2(2004), 41 (2004)
Lall, U., Sharma, A.: A nearest neighbor bootstrap for resampling hydrologic time series. Water Resour. Res. 32(3), 679–693 (1996)
Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Devi, D., Biswas, S.K., Purkayastha, B.: A boosting based adaptive oversampling technique for treatment of class imbalance. In: 2019 International Conference on Computer Communication and Informatics (ICCCI), pp. 1–7 (2019)
Subudhi, S., Panigrahi, S.: Effect of class imbalanceness in detecting automobile insurance fraud. In: 2018 2nd International Conference on Data Science and Business Analytics (ICDSBA), pp. 528–531. IEEE (2018)
Haibo, H., Yang, B., Garcia, E.A., Shutao, L.: ADASYN: adaptive synthetic sampling approach for imbalanced learning. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 1322–1328 (2008)
Acknowledgment
The authors would like to thank the Ministry of Higher Education (MOHE), Government of Malaysia and Research Management Centre, Universiti Teknologi Malaysia for supporting this work through the Tier-2 Grant, vote number Q.K130000.2656.16J48 and Registration Proposal No: PY/2019/00551.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Al-Hashedi, K.G., Magalingam, P., Maarop, N., Samy, G.N., Manaf, A.A. (2021). A Conceptual Model to Identify Illegal Activities on the Bitcoin System. In: Abdullah, N., Manickam, S., Anbar, M. (eds) Advances in Cyber Security. ACeS 2021. Communications in Computer and Information Science, vol 1487. Springer, Singapore. https://doi.org/10.1007/978-981-16-8059-5_2
Download citation
DOI: https://doi.org/10.1007/978-981-16-8059-5_2
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-16-8058-8
Online ISBN: 978-981-16-8059-5
eBook Packages: Computer ScienceComputer Science (R0)