iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-981-16-1490-3_2
Melanins in Vertebrates | SpringerLink
Skip to main content

Melanins in Vertebrates

  • Chapter
  • First Online:
Pigments, Pigment Cells and Pigment Patterns

Abstract

It is known that melanin pigments composed of black to dark brown eumelanin (EM) and yellow to reddish-brown pheomelanin (PM) are widely distributed in vertebrates. Melanin pigments in vertebrate are produced in melanocytes which are distributed in the epidermis, hair follicles, choroid, iris, inner ear, and other tissues. The diversity of the color in the internal and external tissues in vertebrates is mainly attributed to the quantity and ratio of EM and PM. Melanin pigments are highly oxidized and complex pigments. It is thus important to analyze these two types of melanin pigments in studies of the biochemical and genetic bases of pigmentation in vertebrates. Two microanalytical methods to perform the simultaneous measurement of eumelanin and pheomelanin were established to characterize melanin and melanogenesis.

In this chapter, we explain microanalytical application with the chemical degradation of melanin and focus on internal and external melanins produced by pigment cells in vertebrates: mammals, birds, fish, reptiles, and amphibians. By using these methods for the evaluation of the “chemical phenotype,” the mutual triangular relationship among “chemical phenotype,” “visual phenotype,” and “genotype” is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

3-AHP:

3-amino-4-hydroxyphenylalanine

4-AHP:

4-amino-3-hydroxyphenylalanine

5SCD:

5-S-cysteinyldopa

8-oxodG:

8-oxo-7,8-dihydro-2′-deoxyguanosine

α-MSH:

α-melanocyte-stimulating hormone

A500:

absorption at 500 nm

Asip:

agouti signaling protein

BT:

benzothiazine

BT-PM:

PM with a BT moiety

BZ:

benzothiazole

BZ-AA:

6-(2-amino-2-carboxyethyl)-4-hydroxybenzothiazole

BZ-PM:

PM with a BZ moiety

cAMP:

cyclic adenosine monophosphate

CD:

cysteinyldopa

CPD:

cyclobutane pyrimidine dimer

CTNS:

cystinosin, lysosomal cystine transporter

CYS:

cysteine

DA:

dopamine

DC:

dopachrome

DCT:

dopachrome tautomerase

DHBTCA:

7-(2-amino-2-carboxyethyl)-5-hydroxy-dihydro-1,4-benzothiazine-3-carboxylic acid

DHI:

5,6-dihydroxyindole

DHICA:

5,6-dihydroxyindole-2-carboxylic acid

DOMA:

3,4-dihydroxymandelic acid

DOPA:

3,4-dihydroxyphenylalanine

DOPAC:

3,4-dihydroxyphenylacetic acid

DOPET:

3,4-dihydroxyphenylethanol

DOPEG:

3,4-dihydroxyphenylethylene glycol

DQ:

dopaquinone

EM:

eumelanin

EPR:

electron paramagnetic resonance

GSH:

glutathione

HPLC:

high-performance liquid chromatography

HPS:

Hermansky–Pudlak syndrome

iNOS:

inducible nitric oxide synthase

isoPTCA:

pyrrole-2,3,4-tricarboxylic acid

LC:

locus coeruleus

MATP:

membrane-associated transporter protein

MCH:

melanin-concentrating hormone

MC1R:

melanocortin-1 receptor gene

MFSD12:

major facilitator superfamily domain-containing protein 12

MITF:

microphthalmia-associated transcription factor

MRI:

magnetic resonance imaging

NADPH:

nicotinamide adenine dinucleotide phosphate

NE:

norepinephrine

NM:

neuromelanin

NOX:

reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase

OCA:

oculocutaneous albinism

PD:

Parkinson’s disease

PM:

pheomelanin

PMEL:

premelanosome protein

PDCA:

pyrrole-2,3-dicarboxylic acid

PTCA:

pyrrole-2,3,5-tricarboxylic acid

PTeCA:

pyrrole-2,3,4,5-tetracarboxylic acid

RD:

rhododendrol

RES:

resveratrol

ROS:

reactive oxygen species

sAC:

soluble adenylyl cyclase

SN:

substantia nigra

SPE:

solid-phase extraction

Sox10:

SRY-Box transcription factor 10

TDCA:

thiazole-4,5-dicarboxylic acid

TTCA:

thiazole-2,4,5-tricarboxylic acid

Tyrp:

tyrosinase-related protein

UV:

ultraviolet

References

  • Adachi K, Kato K, Wakamatsu K (2005) The histological analysis, colorimetric evaluation, and chemical quantification of melanin content in suntanned fish. Pigment Cell Res 18:465–468

    CAS  PubMed  Google Scholar 

  • Adachi K, Kato K, Wakamatsu K et al (2006) Low temperature induced discoloration of juvenile red sea bream, Pagrus major. Aquacult Sci 54:31–35

    CAS  Google Scholar 

  • Adachi K, Wakamatsu K, Ito S et al (2010) A close relationship between androgen levels and eumelanogenesis in the teleost red seabream (Pagrus major): quantitative analysis of its seasonal variation and effects of oral treatment with methyl testosterone. Comp Biochem Physiol A Mol Integr Physiol 156:184–189

    Google Scholar 

  • Adams DR, Menezes S, Jauregui R et al (2018) One-year pilot study on the effects of nitisinone on melanin in patients with OCA-1B. J Clin Invest 4(2):e124387

    Google Scholar 

  • Adelmann CH, Traunbauer AK, Chen B et al (2020) MFSD12 mediates the import of cysteine into melanosomes and lysosomes. Nature 588: 699–704

    Google Scholar 

  • Adhikari K, Mendoza-Revilla KJ, Sohail A et al (2019) A GWAS in Latin Americans highlights the convergent evolution of lighter skin pigmentation in Eurasia. Nat Commun 10:358

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Affenzeller S, Frauendorf H, Licha T et al (2019) Quantitation of eumelanin and pheomelanin markers in diverse biological samples by HPLC-UV-MS following solid-phase extraction. PLoS One 14(10):e0223552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agrup G, Hansson C, Rorsman H et al (1982) The effect of cysteine on oxidation of tyrosine, dopa, and cysteinyldopas. Arch Dermatol Res 272:103–115

    Google Scholar 

  • Almasi B, Roulin A, Jenni-Eiermann S et al (2008) Parental investment and its sensitivity to corticosterone is linked to melanin-based coloration in barn owls. Horm Behav 54:217–223

    Article  CAS  PubMed  Google Scholar 

  • Ancans J, Tobin DJ, Hoogduijn MJ et al (2001) Melanosomal pH controls rate of melanogenesis, eumelanin / phaeomelanin ratio and melanosome maturation in melanocytes and melanoma cells. Exp Cell Res 268:26–35

    Article  CAS  PubMed  Google Scholar 

  • Ando H, Ryu A, Hashimoto A et al (1998) Linoleic acid and alpha-linolenic acid lightens ultraviolet-induced hyperpigmentation of the skin. Arch Dermatol Res 290:375–381

    Google Scholar 

  • Arai E, Hasegawa M, Nakamura M et al (2014) Male pheomelanin pigmentation and breeding onset in barn swallows Hirundo rustica gutturalis. J Ornithol 156:419–427

    Article  Google Scholar 

  • Arai E, Hasegawa M, Makino T et al (2017) Physiological conditions and genetic controls of phaeomelanin pigmentation in nestling barn swallows. Behav Ecol 28:706–716

    Article  Google Scholar 

  • Avilés JM, Cruz-Miralles Á, Ducrest A-L et al (2020) Redness variation in the Eurasian scops-owl Otus Scops is due to pheomelanin but is not associated with variation in the melanocortin-1 receptor gene (MC1R). Ardeola 67:3–13

    Google Scholar 

  • Baker BI (1993) The role of melanin-concentrating hormone in color change. Ann N Y Acad Sci 680:279–289

    Article  CAS  PubMed  Google Scholar 

  • Barrett RDH, Laurent S, Mallarino R et al (2019) Linking a mutation to survival in wild mice. Science 363:499–504

    Article  CAS  PubMed  Google Scholar 

  • Barsh GS (1996) The genetics of pigmentation: from fancy genes to complex traits. Trends Genet 12:299–305

    Google Scholar 

  • Baxter LL, Watkins-Chow DE, Pavan WJ et al (2019) A curated gene list for expanding the horizons of pigmentation biology. Pigment Cell Melanoma Res 32:348–358

    Article  PubMed  Google Scholar 

  • Bech C, Præsteng KE (2004) Thermoregulatory use of heat increment of feeding in the tawny owl (Strix. aluco). J Therm Biol 29:649–654

    Google Scholar 

  • Beltrán-García MJ, Prado FM, Oliveira MS et al (2014) Singlet Molecular oxygen generation by light-activated DHN-melanin of the fungal pathogen Mycosphaerella fijiensis in Black Sigatoka disease of bananas. PLoS One 9:e91616

    Google Scholar 

  • Bennett DC, Lamoreux ML (2003) The color loci of mice – a genetic century. Pigment Cell Res 16:333–344

    Article  CAS  PubMed  Google Scholar 

  • Biesemeier A, Schraermeyer U, Eibl O (2011) Chemical composition of melanosomes, lipofuscin and melanolipofuscin granules of human RPE tissues. Exp Eye Res 93:29–39

    Google Scholar 

  • Boissy RE, Sakai C, Zhao H et al (1998) Human tyrosinase related protein-1 (TRP-1) does not function as a DHICA oxidase activity in contrast to murine TRP-1. Exp Dermatol 7:198–204

    Google Scholar 

  • Bortolotti GR (2006) Natural selection and coloration: protection, concealment, advertisement, or deception? In: Hill GE, McGraw KJ (eds) Bird coloration, vol 2. Harvard University Press, Cambridge, pp 3–35

    Chapter  Google Scholar 

  • Bush WD, Garguilo J, Zucca FA et al (2006) The surface oxidation potential of human neuromelanin reveals a spherical architecture with a pheomelanin core and a eumelanin surface. Proc Natl Acad Sci U S A 103:14785–14789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carballo-Carbajal I, Laguna A, Romero-Giménez J et al (2019) Brain tyrosinase overexpression implicates age-dependent neuromelanin production in Parkinson’s disease pathogenesis. Nat Commun 10:973

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cassidy CM, Zucca FA, Girgis RR et al (2019) Neuromelanin-sensitive MRI as a noninvasive proxy measure of dopamine function in the human brain. Proc Natl Acad Sci U S A 116:5108–5117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheli Y, Luciani F, Khaled M et al (2009) αMSH and cyclic AMP elevating agents control melanosome pH through a protein kinase A-independent mechanism. J Biol Chem 284:18699–18706

    Google Scholar 

  • Chen SR, Jiang B, Zheng JX et al (2008) Isolation and characterization of natural melanin derived from silky fowl (Gallus gallus domesticus Brisson). Food Chem 111:745–749

    Google Scholar 

  • Chiarelli-Neto O, Ferreira AS, Martins WK et al (2014) Melanin photosensitization and the effect of visible light on epithelial cells. PLoS One 9:e113266

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chintala S, Li W, Lamoreux ML et al (2005) Slc7a11 gene controls production of pheomelanin pigment and proliferation of cultured cell. Proc Natl Acad Sci U S A 102:10964–10969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung JH (2003) Photoaging in Asians. Photodermatol Photoimmunol Photomed 19:109–121

    Article  PubMed  Google Scholar 

  • Costin GE, Hearing VJ (2007) Human skin pigmentation: melanocytes modulate skin color in response to stress. FASEB J 21:976–994

    Article  CAS  PubMed  Google Scholar 

  • Crawford NG, Kelly DE, Hansen MEB et al (2017) Loci associated with skin pigmentation identified in African populations. Science 358:eaan8433

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crespo R, Pizarr M (2006) Skin and abdominal fascia melanization in Broiler Chickens. Avian Dis 50:309–311

    Article  PubMed  Google Scholar 

  • d’Ischia M, Wakamatsu K, Napolitano A et al (2013) Melanins and melanogenesis: methods, standards, protocols. Pigment Cell Melanoma Res 26:616–633

    Article  PubMed  CAS  Google Scholar 

  • Del Bino S, Bernerd F (2013) Variations in skin colour and the biological consequences of ultraviolet radiation exposure. Br J Dermatol 169(Suppl 3):33–40

    Article  PubMed  CAS  Google Scholar 

  • Del Bino S, Sok J, Bessac E et al (2006) Relationship between skin response to ultraviolet exposure and skin color type. Pigment Cell Res 19:606–614

    Article  PubMed  CAS  Google Scholar 

  • Del Bino S, Ito S, Sok J et al (2015) Chemical analysis of constitutive pigmentation of human epidermis reveals constant eumelanin to pheomelanin ratio. Pigment Cell Melanoma Res 28:707–717

    Article  PubMed  CAS  Google Scholar 

  • del Marmol V, Ito S, Bouchard B et al (1996) Cysteine deprivation promotes eumelanogenesis in human melanoma cells. J Invest Dermatol 107:698–702

    Article  PubMed  Google Scholar 

  • Domyan ET, Hardy J, Wright T et al (2019) SOX10 regulates multiple genes to direct eumelanin versus pheomelanin production in domestic rock pigeon. Pigment Cell Melanoma Res 32:634–642

    Google Scholar 

  • Dubey S, Roulin A (2014) Evolutionary and biomedical consequences of internal melanins. Pigment Cell Melanoma Res 27:327–338

    Article  CAS  PubMed  Google Scholar 

  • Eisenhofer G, Kopin IJ, Goldstein DS (2004) Catecholamine metabolism: a contemporary view with implications for physiology and medicine. Pharmacol Rev 56:331–349

    Article  CAS  PubMed  Google Scholar 

  • Elder DE (1995) Skin cancer. Melanoma and other specific nonmelanoma skin cancers. Cancer 75:245–256

    Article  CAS  PubMed  Google Scholar 

  • Engelen M, Vanna R, Bellei C et al (2012) Neuromelanins of human brain have soluble and insoluble components with dolichols attached to the melanic structure. PLoS One 7:e48490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enshell-Seijiffers D, Lindon C, Wu E et al (2010) β-catenin activity in the dermal papilla of the hair follicle regulates pigment-type switching. Proc Natl Acad Sci U S A 107:21564–21569

    Article  Google Scholar 

  • Fajuyigbe D, Lwin SM, Diffey BL et al (2018) Melanin distribution in human epidermis affords localized protection against DNA photodamage and concurs with skin cancer incidence difference in extreme phototypes. FASEB J 32:3700–3706

    Article  CAS  PubMed  Google Scholar 

  • Faraco CD, Vaz SAS, Pástor MAD et al (2001) Hyperpigmentation in the silkie fowl correlates with abnormal migration of fate-restricted melanoblasts and loss of environmental barrier molecules. Dev Dyn 220:212–225

    Google Scholar 

  • Fedorow H, Tribl F, Halliday G et al (2005) Neuromelanin in human dopamine neurons: comparison with peripheral melanins and relevance to Parkinson’s disease. Prog Neurobiol 75:109–124

    Article  CAS  PubMed  Google Scholar 

  • Foster M (1965) Mammalian pigment genetics. Adv Genet 13:311–339

    Article  CAS  PubMed  Google Scholar 

  • Fuller BB, Spaulding DT, Smith DR (2001) Regulation of the catalytic activity of preexisting tyrosinase in black and Caucasian human melanocyte cell cultures. Exp Cell Res 262:197–208

    Article  CAS  PubMed  Google Scholar 

  • Gahl WA, Bashan N, Tietze F et al (1982) Cystine transport is defective in isolated leukocyte lysosomes from patients with cystinosis. Science 217:1263–1265

    Article  CAS  PubMed  Google Scholar 

  • Gallone A, Sagliano A, Guida G et al (2007) The melanogenic system of the liver pigmented macrophages of Rana esculenta L. –tyrosinase activity. Histol Histopathol 22:1065–1075

    Google Scholar 

  • Galván I, Alonso-Alvarez C (2009) The expression of melanin-based plumage is separately modulated by exogenous oxidative stress and a melanocortin. Proc R Soc Lond B Biol Sci 276:3089–3097

    Google Scholar 

  • Galván I, Jorge A (2015) Dispersive Raman spectroscopy allows the identification and quantification of melanin types. Ecol Evol 5:1425–1431

    Article  PubMed  PubMed Central  Google Scholar 

  • Galván I, Møller AP (2011) Brain size and the expression of pheomelanin-based colour in birds. J Evol Biol 24:999–1006

    Google Scholar 

  • Galván I, Møller AP (2013) Pheomelanin-based plumage coloration predicts survival rates in birds. Physiol Biochem Zool 86:184–192

    Article  PubMed  Google Scholar 

  • Galván I, Solano F (2009) The evolution of eu- and pheomelanic traits may respond to an economy of pigments related to environmental oxidative stress. Pigment Cell Melanoma Res 22:339–342

    Article  PubMed  CAS  Google Scholar 

  • Galván I, Solano F (2015) Melanin chemistry and the ecology of stress. Physiol Biochem Zool 88:352–355

    Article  PubMed  Google Scholar 

  • Galván I, Bonisoli-Alquati A, Jenkinson S et al (2014) Chronic exposure to low-dose radiation at Chernobyl favours adaptation to oxidative stress in birds. Funct Ecol 28:1387–1403

    Article  Google Scholar 

  • Gaudel C, Soysouvanh F, Leclerc J et al (2020) Regulation of melanogenesis by the amino acid transporter SLC7A5. I Invest Dermatol 140:2253–2259

    Google Scholar 

  • Glass K, Ito S, Wilby PR et al (2012) Direct chemical evidence for eumelanin pigment from the Jurassic period. Proc Natl Acad Sci U S A 109:10218–10223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goedert M (2001) Alpha-synuclein and neurodegenerative diseases. Nat Rev Neurosci 2:492–501

    Article  CAS  PubMed  Google Scholar 

  • Gümüşlü S, Sarikçioĝlu SB, Sahin E et al (2002) Influences of different stress models on the antioxidant status and lipid peroxidation in rat erythrocytes. Free Radic Res 36:1277–1282

    Article  PubMed  CAS  Google Scholar 

  • Gunn TM, Inui T, Kitada K et al (2001) Molecular and phenotypic analysis of attractin mutant mice. Genetics 158:1683–1695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halder RM, Ara CJ (2003) Skin cancer and photoaging in ethnic skin. Dermatol Clin 21:725–732

    Article  PubMed  Google Scholar 

  • Hayashi H, Sone M, Schachern PA et al (2007) Comparison of the quantity of cochlear melanin in young and old C57BL/6 mice. Arch Otolaryngol Head Neck Surg 133:151–154

    Article  PubMed  Google Scholar 

  • Hellström AR, Watt B, Fard SS et al (2011) Inactivation of Pmel alters melanosome shape but has only a subtle effect on visible pigmentation. PLoS Genet 7:e1002285

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hermansky F, Pudlak P (1959) Albinism associated with hemorrhagic diathesis and unusual pigmented reticular cells in the bone marrow: Report of two cases with histochemical studies. Blood 14:162–169

    Article  CAS  PubMed  Google Scholar 

  • Hill HZ, Hill GJ (2000) UVA, pheomelanin and the carcinogenesis of melanoma. Pigment Cell Res 13(Suppl 8):140–144

    Article  PubMed  Google Scholar 

  • Hill HZ, Li W, Xin P et al (1997) Melanin: a two edged sword? Pigment Cell Res 10:158–161

    Article  CAS  PubMed  Google Scholar 

  • Hirobe T (1984) Effects of genic substitution at the brown locus on the differentiation of epidermal melanocytes in newborn mouse skin. Anat Rec 209:425–432

    Article  CAS  PubMed  Google Scholar 

  • Hirobe T (1992) Control of melanocyte proliferation and differentiation in the mouse epidermis. Pigment Cell Res 5:1–11

    Article  CAS  PubMed  Google Scholar 

  • Hirobe T (2011) How are proliferation and differentiation of melanocytes regulated? Pigment Cell Melanoma Res 24:462–478

    Article  CAS  PubMed  Google Scholar 

  • Hirobe T (2012) The coat color genes regulate eumelanin and pheomelanin synthesis in melanocytes. In: Ma X-P, Sun X-X (eds) Melanin: biosynthesis, functions and health effects. Nova Science Publishers, Inc., New York, pp 109–137

    Google Scholar 

  • Hirobe T, Abe H (1999) Genetic and epigenetic control of the proliferation and differentiation of mouse epidermal melanocytes in culture. Pigment Cell Res 12:147–163

    Article  CAS  PubMed  Google Scholar 

  • Hirobe T, Wakamatsu K, Ito S (1998) Effects of genic substitution at the agouti, brown, albino, dilute, and pink-eyed dilution loci on the proliferation and differentiation of mouse epidermal melanocytes in serum-free culture. Eur J Cell Biol 75:184–191

    Google Scholar 

  • Hirobe T, Wakamatsu K, Ito S (2003) Changes in the proliferation and differentiation of neonatal mouse pink-eyed dilution melanocytes in the presence of excess tyrosine. Pigment Cell Res 16:619–628

    Article  CAS  PubMed  Google Scholar 

  • Hirobe T, Takeuchi S, Hotta E et al (2004) Pheomelanin production in the epidermis from newborn agouti mice is induced by the expression of the agouti gene in the dermis. Pigment Cell Res 17:506–514

    Article  CAS  PubMed  Google Scholar 

  • Hirobe T, Wakamatsu K, Ito S et al (2006) The slaty mutation affects eumelanin and pheomelanin synthesis in mouse melanocytes. Eur J Cell Biol 85:537–549

    Article  CAS  PubMed  Google Scholar 

  • Hirobe T, Wakamatsu K, Ito S (2007a) The eumelanin and pheomelanin contents in dorsal hairs of female recessive yellow mice are greater than in male. J Dermatol Sci 45:55–62

    Article  CAS  PubMed  Google Scholar 

  • Hirobe T, Abe H, Wakamatsu K et al (2007b) Excess tyrosine rescues the reduced activity of proliferation and differentiation of cultured recessive yellow melanocytes derived from neonatal mouse epidermis. Eur J Cell Biol 86:315–330

    Article  CAS  PubMed  Google Scholar 

  • Hirobe T, Kiuchi M, Wakamatsu K et al (2010) Estrogen increases hair pigmentation in female recessive yellow mice. Zool Sci 27:470–476

    Google Scholar 

  • Hirobe T, Ito S, Wakamatsu K (2011a) The mouse pink-eyed dilution allele of the P-gene greatly inhibits eumelanin, but not pheomelanin synthesis. Pigment Cell Melanoma Res 24:241–246

    Google Scholar 

  • Hirobe T, Yoshihara C, Takeuchi S et al (2011b) A novel deletion mutation of mouse ruby-eye 2 named ru2d/Hps5ru2-d inhibits melanocyte differentiation and its impaired differentiation is rescued by L-tyrosine. Zool Sci 28:790–801

    Article  CAS  Google Scholar 

  • Ho SGY, Chan HHL (2009) The Asian dermatologic patient: review of common pigmentary disorders and cutaneous diseases. Am J Clin Dermatol 10:153–168

    Google Scholar 

  • Hourblin V, Nouveau S, Roy N et al (2014) Skin complexion and pigmentary disorders in facial skin of 1204 women in 4 Indian cities. Indian J Dermatol Venereol Leprol 80:395–401

    Article  PubMed  Google Scholar 

  • Hudon J (2005) Considerations in the conservation of feathers and hair, particularly their pigments. In: Proc. CAC/ACCR 31st Annual Conf., Jasper, AB, Canada, May, pp. 127–147

    Google Scholar 

  • Ito S (2006) Encapsulation of a reactive core in neuromelanin. Proc Natl Acad Sci U S A 103:14647–14648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito S, Fujita K (1985) Microanalysis of eumelanin and pheomelanin in hair and melanomas by chemical degradation and liquid chromatography. Anal Biochem 144:527–536

    Article  CAS  PubMed  Google Scholar 

  • Ito S, Prota GA (1977) A facile one-step synthesis of cysteinyldopas using mushroom tyrosinase. Experientia 33:1118–1119

    Article  CAS  PubMed  Google Scholar 

  • Ito S, Wakamatsu K (2003) Quantitative analysis of eumelanin and pheomelanin in humans, mice, and other animals: a comparative review. Pigment Cell Res 16:523–531

    Article  PubMed  Google Scholar 

  • Ito S, Wakamatsu K (2008) Chemistry of mixed melanogenesis – pivotal roles of dopaquinone. Photochem Photobiol 84:582–592

    Article  CAS  PubMed  Google Scholar 

  • Ito S, Wakamatsu K (2011a) Human hair melanins: what we have learned and have not learned from mouse coat color pigmentation. Pigment Cell Melanoma Res 24:63–74

    Article  CAS  PubMed  Google Scholar 

  • Ito S, Wakamatsu K (2011b) Diversity of human hair pigmentation as studied by chemical analysis of eumelanin and pheomelanin. J Eur Acad Dermatol Venereol 25:1369–1380

    Article  CAS  PubMed  Google Scholar 

  • Ito S, Wakamatsu K (2018) Biochemical mechanism of rhododendrol-induced leukoderma. Int J Mol Sci 19:e552

    Article  PubMed  CAS  Google Scholar 

  • Ito S, Nakanishi Y, Valenzuela RK et al (2011c) Usefulness of alkaline hydrogen peroxide oxidation to analyze eumelanin and pheomelanin in various tissue samples: application to chemical analysis of human hair melanins. Pigment Cell Melanoma Res 24:605–613

    Article  CAS  PubMed  Google Scholar 

  • Ito S, Wakamatsu K, d’Ischia M et al (2011d) Structure of melanins: melanins and melanosomes: biosynthesis, biogenesis, physiological, and pathological functions. Wiley-Blackwell, Amsterdam, pp 167–185

    Book  Google Scholar 

  • Ito S, Suzuki N, Takebayashi S et al (2013a) Neutral pH and copper ions promote eumelanogenesis after the dopachrome stage. Pigment Cell Melanoma Res 26:817–825

    Article  CAS  PubMed  Google Scholar 

  • Ito S, Wakamatsu K, Glass K et al (2013b) High-performance liquid chromatography estimation of cross-linking of dihydroxyindole moiety in eumelanin. Anal Biochem 434:221–225

    Article  CAS  PubMed  Google Scholar 

  • Ito S, Pilat A, Gerwat W et al (2013c) Photoaging of human retinal pigment epithelium is accompanied by oxidative modifications of its eumelanin. Pigment Cell Melanoma Res 26:357–366

    Article  CAS  PubMed  Google Scholar 

  • Ito S, Ojika M, Yamashita T et al (2014a) Tyrosinase-catalyzed oxidation of rhododendrol produces 2-methylchromane-6,7-dione, the putative ultimate toxic metabolite: implication for melanocyte toxicity. Pigment Cell Melanoma Res 27:744–753

    Google Scholar 

  • Ito S, Gerwat W, Kolbe L et al (2014b) Human tyrosinase is able to oxidize both enantiomers of rhododendrol. Pigment Cell Melanoma Res 27:1149–1153

    Article  CAS  PubMed  Google Scholar 

  • Ito S, Okura M, Wakamatsu K et al (2017) The potent pro-oxidant activity of rhododendrol-eumelanin induces cysteine depletion in B16 melanoma cells. Pigment Cell Melanoma Res 30:63–67

    Article  CAS  PubMed  Google Scholar 

  • Ito S, Wakamatsu K, Sarna T (2018b) Photodegradation of eumelanin and pheomelanin and its pathophysiological implications. Photochem Photobiol 94:409–420

    Article  CAS  PubMed  Google Scholar 

  • Ito S, Miyake S, Maruyama S et al (2018c) Acid hydrolysis reveals a low but constant level of pheomelanin in human black to brown hair. Pigment Cell Melanoma Res 31:393–403

    Article  CAS  PubMed  Google Scholar 

  • Ito S, Fujiki Y, Matsui N et al (2019) Tyrosinase-catalyzed oxidation of resveratrol produces a highly reactive ortho-quinone: implications for melanocyte toxicity. Pigment Cell Melanoma Res 32:766–776

    Article  CAS  PubMed  Google Scholar 

  • Ito S, Sugumaran M, Wakamatsu K (2020a) Chemical reactivities of ortho-quinones produced in living organisms: fate of quinonoid products formed by tyrosinase and phenoloxidase action on phenols and catechols. Int J Mol Sci 21:6080

    Article  CAS  PubMed Central  Google Scholar 

  • Ito S, Del Bino S, Hirobe T et al (2020b) Improved HPLC conditions to determine eumelanin and pheomelanin contents in biological samples using an ion pair reagent. Int J Mol Sci 21:5134

    Google Scholar 

  • Itou T, Ito S, Wakamatsu K (2019) Effects of aging on hair color, melanosome morphology, and melanin composition in Japanese females. Int J Mol Sci 20:3739

    Article  CAS  PubMed Central  Google Scholar 

  • Iwata Y, Kobayashi T, Arima M et al (2017) Case of Japanese Hermansky-Pudlak syndrome patient with deeply invasive squamous cell carcinoma and multiple lesions of actinic keratosis on the face and neck. J Dermatol 44:219–220

    Article  PubMed  Google Scholar 

  • Jackson IJ, Chambers D, Rinchik EM et al (1990) Characterization of TRP-1 mRNA levels in dominant and recessive mutations at the mouse brown (b) locus. Genetics 126:451–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson IJ, Chambers DM, Tsukamoto K et al (1992) A second tyrosinase-related protein, TRP-2, maps to and is mutated at the mouse slaty locus. EMBO J 11:527–535

    Google Scholar 

  • Jiménez-Cervantes C, Solano F, Kobayashi T et al (1994) A new enzymatic function in the melanogenic pathway. The 5,6-dihydroxyindole-2-carboxylic acid oxidase activity of tyrosinase-related protein-1 (TRP1). J Biol Chem 269:17993–18000

    Article  PubMed  Google Scholar 

  • Jonas AJ, Smith ML, Schneider JA (1982) ATP-dependent lysosomal cystine efflux is defective in cystinosis. J Biol Chem 257:13185–13188

    Article  CAS  PubMed  Google Scholar 

  • Kadekaro AL, Kavanagh RJ, Wakamatsu K et al (2003) Cutaneous photobiology. The melanocyte versus the sun: who will win the final round? Pigment Cell Res 16:434–447

    Article  CAS  PubMed  Google Scholar 

  • Karell P, Ahola K, Karstinen T et al (2011) Climate change drives microevolution in a wild bird. Nat Commun 2:208

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Urabe K, Winder AJ et al (1994) Tyrosinase related protein 1 (TRP1) functions as a DHICA oxidase in melanin biosynthesis. EMBO J 13:5818–5825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kono M, Kondo T, Ito S et al (2012) Genotype analysis in a patient with oculocutaneous albinism 1 minimal pigment type. Br J Dermatol 166:896–898

    Article  CAS  PubMed  Google Scholar 

  • Körner AM, Pawelek J (1980) DOPAchrome conversion: a possible control point in melanin biosynthesis. J Invest Dermatol 75:192–195

    Google Scholar 

  • Koshy S, Vettivel S (2001) Melanin pigments in human pineal gland. J Anat Soc India 50:122–126

    Google Scholar 

  • Koskenpato K, Ahola K, Karstinen T et al (2016) Is the denser contour feather structure in pale grey than in pheomelanic brown tawny owls Strix aluco an adaptation to cold environments? J Avian Biol 47:1–6

    Google Scholar 

  • Kroumpouzos G, Urabe K, Kobayashi T et al (1994) Functional analysis of the slaty gene product (TRP2) as dopachrome tautomerase and the effect of a point mutation on its catalytic function. Biochem Biophys Res Commun 202:1060–1068

    Article  CAS  PubMed  Google Scholar 

  • Lamason RL, Mohideen M-APK, Mest IR et al (2005) SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans. Science 310:1782–1786

    Google Scholar 

  • Lamoreux ML, Wakamatsu K, Ito S (2001) Interaction of major coat color gene functions in mice as studied by chemical analysis of eumelanin and pheomelanin. Pigment Cell Res 14:23–31

    Google Scholar 

  • Land EJ, Riley PA (2000) Spontaneous redox reactions of dopaquinone and the balance between the eumelanic and phaeomelanic pathways. Pigment Cell Res 13:273–277

    Article  CAS  PubMed  Google Scholar 

  • Land EJ, Ito S, Wakamatsu K et al (2003) Rate constants for the first two chemical steps of eumelanogenesis. Pigment Cell Res 16:487–493

    Article  CAS  PubMed  Google Scholar 

  • Lao O, de Gruijter JM, van Duijin K et al (2007) Signatures of positive selection in genes associated with human skin pigmentation as revealed from analyses of single nucleotide polymorphisms. Ann Hum Genet 71:354–369

    Article  CAS  PubMed  Google Scholar 

  • Larsen HAS, Austbø L, Mørkøre T et al (2012) Pigment-producing granulomatous myopathy in Atlantic salmon: a novel inflammatory response. Fish Shellfish Immunol 33:277–285

    Article  CAS  PubMed  Google Scholar 

  • Laurentino TG, Moser D, Roesti M et al (2020) Genomic release-recapture experiment in the wild reveals within-generation polygenic selection in stickleback fish. Nat Commun 11:1928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawrence KP, Douki T, Sarkany RPE et al (2018) The UV/visible radiation boundary region (385–405 nm) damages skin cells and induces “dark” cyclobutane pyrimidine dimers in human skin in vivo. Sci Rep 8:12722

    Google Scholar 

  • Leerunyakul K, Suchonwanit P (2020) Asian hair: a review of structures, properties, and distinctive disorders. Clin Cosmet Investig Dermatol 13:309–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindgren J, Sjövall P, Thiel V et al (2018) Soft-tissue evidence for homeothermy and crypsis in a Jurassic ichthyosaur. Nature 564:359–365

    Google Scholar 

  • Lindgren J, Nilsson D-E, Sjövall P et al (2019) Fossil insect eyes shed light on trilobite optics and the arthropod pigment screen. Nature 573:122–125

    Google Scholar 

  • Liu SY, Shawkey MD, Parkinson D et al (2014) Elucidation of the chemical composition of avian melanin. RSC Adv 4:40396–40399

    Article  CAS  Google Scholar 

  • Mann DMA, Yates PO (1983) Possible role of neuromelanin in the pathogenesis of Parkinson’s disease. Mech Aging Dev 21:193–203

    Article  CAS  PubMed  Google Scholar 

  • Marsden CD (1961) Pigmentation in the nucleus substantiae nigrae of mammals. J Anat 95:256–261

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marsden CD (1983) Neuromelanin and Parkinson’s disease. J Neural Transm 19:121–141

    CAS  Google Scholar 

  • McGraw KJ (2006) Mechanics of uncommon colors: Pterins, porphyrins, and psittacofulvins. In: Hill GH, McGraw KJ (eds) Bird coloration, vol 1. Harvard University Press, Harvard, pp 354–398

    Google Scholar 

  • McGraw KJ, Safra RJ, Evans MR et al (2004) European barn swallows use melanin pigments to color their feathers brown. Behav Ecol 15:889–891

    Article  Google Scholar 

  • McNamara ME, Kaye JS, Benton MJ et al (2018) Non-integumentary melanosomes can bias reconstructions of the colours of fossil vertebrates. Nat Commun 9:2878

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miller MW, Duhl DM, Vrieling H et al (1993) Cloning of the mouse agouti gene predicts a secreted protein ubiquitously expressed in mice carrying the lethal yellow mutation. Genes Dev 7:454–467

    Article  CAS  PubMed  Google Scholar 

  • Mitra D, Luo X, Morgan A et al (2012) An ultraviolet-radiation-independent pathway to melanoma carcinogenesis in the red hair/fair skin background. Nature 491:449–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Na J-I, Shin J-W, Choi H-R et al (2019) Resveratrol as a multifunctional topical hypopigmenting agent. Int J Mol Sci 20:E956

    Google Scholar 

  • Napolitano A, Panzella L, Monfrecola G et al (2014) Pheomelanin-induced oxidative stress: bright and dark chemistry bridging red hair phenotype and melanoma. Pigment Cell Melanoma Res 27:721–733

    Article  CAS  PubMed  Google Scholar 

  • Negro JJ, Blasco R, Rosell J et al (2016) Potential exploitation of avian resources by fossil hominins: An overview from ethnographic and historical data. Quat Int 421:6–11

    Article  Google Scholar 

  • Nicolaus RA (1969) Melanins. Hermann, Paris

    Google Scholar 

  • Nishigori C, Aoyama Y, Ito A et al (2015) Guide for medical professionals (i.e. dermatologists) for the management of Rhododendrol-induced leukoderma. J Dermatol 42:113–128

    Article  PubMed  Google Scholar 

  • Noonan FP, Zaidi MR, Wolnicka-Glubisz A et al (2012) Melanoma induction by ultraviolet A but not ultraviolet B radiation requires melanin pigment. Nat Commun 3:e884

    Google Scholar 

  • Norton HL, Kittles RA, Parra E et al (2007) Genetic evidence for the convergent evolution of light skin in Europeans and East Asians. Mol Biol Evol 24:710–722

    Article  CAS  PubMed  Google Scholar 

  • Nouveau-Richard S, Yang Z, Mac-Mary S et al (2005) Skin ageing: a comparison between Chinese and European populations. A pilot study. J Dermatol Sci 40:187–193

    Article  CAS  PubMed  Google Scholar 

  • Okamura K, Abe Y, Araki Y et al (2018) Characterization of melanosomes and melanin in Japanese patients with Hermansky-Pudlak Syndrome Type 1, 4, 6 and 9. Pigment Cell Melanoma Res 31:267–276

    Google Scholar 

  • Olivares C, Jiménez-Cervantes J, Lozano A et al (2001) The 5,6-dihydroxyindole-2-carboxylic acid (DHICA) oxidase activity of human tyrosinase. Biochem J 354:131–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olsson M, Healey M, Wapstra E et al (2007) Mating system variation and morph fluctuations in a polymorphic lizard. Mol Ecol 16:5307–5315

    Article  PubMed  Google Scholar 

  • Ozaki S, Funasaka Y, Otsuka Y et al (2017) Melanotic malignant melanoma in oculocutaneous albinism type 4. Acta Derm Venereol 97:287–288

    Article  PubMed  Google Scholar 

  • Ozeki H, Ito S, Wakamatsu K et al (1995) Chemical characterization of hair melanins in various coat-color mutants of mice. J Invest Dermatol 105:361–366

    Google Scholar 

  • Ozeki H, Ito S, Wakamatsu K et al (1996) Spectrophotometric characterization of eumelanin and pheomelanin in hair. Pigment Cell Res 9:265–270

    Article  CAS  PubMed  Google Scholar 

  • Ozeki H, Wakamatsu K, Ito S et al (1997) Chemical characterization of eumelanins with special emphasis on 5,6-dihydroxyindole-2-carboxylic acid content and molecular size. Anal Biochem 248:149–157

    Google Scholar 

  • Pan T, Zhu J, Hwu W-J et al (2012) The role of alpha-synuclein in melanin synthesis in melanoma and dopaminergic neuronal cells. PLoS One 7:e45183

    Google Scholar 

  • Park J, Park JH, Suh H-J et al (2014) Effects of resveratrol, oxyresveratrol, and their acetylated derivatives on cellular melanogenesis. Arch Dermatol Res 306:475–487

    Google Scholar 

  • Pawelek JM, Körner AM, Bergstrom A et al (1980) New regulators of melanin biosynthesis and the autodestruction of melanoma cells. Nature 286:617–619

    Article  CAS  PubMed  Google Scholar 

  • Peles DN, Simon JD (2012) The UV-absorption spectrum of human iridal melanosomes: a new perspective on the relative absorption of eumelanin and pheomelanin and its consequences. Photochem Photobiol 88:1378–1384

    Google Scholar 

  • Peles DN, Hong L, Hu DN et al (2009) Human iridal stroma melanosomes of varying pheomelanin contents possess a common eumelanic outer surface. J Phys Chem B 113:11346–11351

    Google Scholar 

  • Pisoni RL, Acker TL, Lisowski KM et al (1990) A cysteine-specific lysosomal transport system provides a major route for the delivery of thiol to human fibroblast lysosomes: possible role in supporting lysosomal proteolysis. J Cell Biol 110:327–335

    Article  CAS  PubMed  Google Scholar 

  • Potterf SB, Virador V, Wakamatsu K et al (1999) Cysteine transport in melanosomes from murine melanocytes. Pigment Cell Res 12:4–12

    Article  CAS  PubMed  Google Scholar 

  • Premi S, Wallisch S, Mano CM et al (2015) Chemiexcitation of melanin derivatives induces DNA photoproducts long after UV exposure. Science 347:842–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Premi S, Brash DE (2015) Unanticipated role of melanin in causing carcinogenic cyclobutane pyrimidine dimers. Mol Cell Oncol 3 (1):e1033588

    Google Scholar 

  • Prota G (1995) The chemistry of melanins and melanogenesis. Fortschr Chem Org Naturst 64:93–148

    CAS  PubMed  Google Scholar 

  • Prum RO (2006) Anatomy, physics, and evolution of avian structural colors. In: Hill GE, McGraw KJ (eds) Bird coloration, vol 1. Harvard University Press, Cambridge, pp 295–353

    Google Scholar 

  • Rioux B, Rouanet J, Akil H et al (2019) Determination of eumelanin and pheomelanin in melanomas using solid-phase extraction and high performance liquid chromatography – diode array detection (HPLC-DAD) analysis. J Chromatogr B 1113:60–68

    Google Scholar 

  • Rodríguez-Martínez S, Wakamatsu K, Galván I (2020) Increase of the benzothiazole moiety content of pheomelanin pigment after endogenous free radical inducement. Dyes Pigments 180:108516

    Article  CAS  Google Scholar 

  • Rorsman H, Agrup G, Hansson C et al (1979) Detection of Phaeomelanins. Pigment Cell 4:244–252

    Google Scholar 

  • Rossi V, McNamara ME, Webb SM et al (2019) Tissue-specific geometry and chemistry of modern and fossilized melanosomes reveal internal anatomy of extinct vertebrates. Proc Natl Acad Sci U S A 116:17880–17889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roulin A, Mafli A, Wakamatsu K (2013) Reptiles produce pheomelanin: evidence in the Eastern Hermann’s Tortoise (Eurotestudo boettgeri). J Herpetol 47:258–261

    Google Scholar 

  • Rózanowska M (2011) Properties and functions of ocular melanins and melanosomes. In: Borovansky J, Riley PA (eds) Melanins and melanosomes: biosynthesis, biogenesis, physiological, and pathological functions. Wiley, Weinheim, pp 187–224

    Chapter  Google Scholar 

  • Sakurai T, Ochiai H, Takeuchi T (1975) Ultrastructural change of melanosomes associated with agouti pattern formation in mouse hair. Dev Biol 47:466–471

    Article  CAS  PubMed  Google Scholar 

  • Sasaki M, Shibata E, Tohyama K et al (2006) Neuromelanin magnetic resonance imaging of locus ceruleus and substantia nigra in Parkinson’s disease. Neuroreport 17:1215–1218

    Google Scholar 

  • Sasaki M, Kondo M, Sato K et al (2014) Rhododendrol, a depigmentation-inducing phenolic compound, exerts melanocyte cytotoxicity via a tyrosinase-dependent mechanism. Pigment Cell Melanoma Res 27:754–763

    Article  CAS  PubMed  Google Scholar 

  • Sealy RC, Hyde JS, Felix CC et al (1982) Novel free radicals in synthetic and natural pheomelanins: distinction between dopa melanins and cysteinyldopa melanins by ESR spectroscopy. Proc Natl Acad Sci U S A 79:2885–2889

    Google Scholar 

  • Shaito A, Posadino AM, Younes N et al (2020) Potential adverse effects of resveratrol: a literature review. Int J Mol Sci 21:2084

    Google Scholar 

  • Shono S, Toda K (1981) Phenotypic expression in pigment cells. In: Seiji M (ed) Pigment cell. University of Tokyo Press, Tokyo, pp 263–268

    Google Scholar 

  • Silvers WK (1979) The coat colors of mice: a model for mammalian gene action and interaction. Springer, Basel

    Book  Google Scholar 

  • Simon JD, Peles DN (2010) The red and the black. Acc Chem Res 43:1452–1460

    Google Scholar 

  • Simon JD, Peles D, Wakamatsu K et al (2009) Current challenges in understanding melanogenesis: bridging chemistry, biological control, morphology, and function. Pigment Cell Melanoma Res 22:563–579

    Google Scholar 

  • Smith DR, Spaulding DT, Glenn HM et al (2004) The relationship between Na+/H+ exchanger expression and tyrosinase activity in human melanocytes. Exp Cell Res 298:521–534

    Google Scholar 

  • Sturm RA (2009) Molecular genetics of human pigmentation diversity. Hum Mol Genet 18:R9–R17

    Article  CAS  PubMed  Google Scholar 

  • Sturm RA, Duffy DL (2012) Human pigmentation genes under environmental selection. Genome Biol 13:248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sturm RA, Frudakis TN (2004) Eye colour: portals into pigmentation genes and ancestry. Trends Genet 20:327–332

    Article  CAS  PubMed  Google Scholar 

  • Sulzer D, Mosharov E, Talloczy Z et al (2008) Neuronal pigmented autophagic vacuoles: lipofuscin, neuromelanin, and ceroid as macroautophagic responses during aging and disease. J Neurochem 106:24–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sulzer D, Cassidy C, Horga G et al (2018) Neuromelanin detection by magnetic resonance imaging (MRI) and its promise as a biomarker for Parkinson’s disease. NPJ Parkinson's Dis 4:11

    Article  Google Scholar 

  • Szewczyk G, Zadlo A, Sarna M et al (2016) Aerobic photoreactivity of synthetic eumelanins and pheomelanins: generation of singlet oxygen and superoxide anion. Pigment Cell Melanoma Res 29:669–678

    Article  CAS  PubMed  Google Scholar 

  • Tamate HB, Hirobe T, Wakamatsu K et al (1989) Levels of tyrosinase and its mRNA in coat-color mutants of C57BL/10J congenic mice: effects of genic substitution at the agouti, brown, albino, dilute, and pink-eyed dilution loci. J Exp Zool 250:304–311

    Article  CAS  PubMed  Google Scholar 

  • Tanaka S, Yamamoto H, Takeuchi S et al (1990) Melanization in albino mice transformed by introducing cloned mouse tyrosinase gene. Development 108:223–227

    Google Scholar 

  • Tanaka G, Parker AR, Hasegawa Y et al (2014) Mineralized rods and cones suggest colour vision in a 300 Myr-old fossil fish. Nat Commun 5:5920

    Google Scholar 

  • Tanaka H, Yamashita Y, Umezawa K et al (2018) The Pro-Oxidant activity of pheomelanin is significantly enhanced by UVA irradiation: benzothiazole moieties are more reactive than benzothiazine moieties. Int J Mol Sci 19:2889

    Google Scholar 

  • Tewari A, Sarkany RP, Young AR (2012) UVA1 induces cyclobutane pyrimidine dimers but not 6-4 photoproducts in human skin in vivo. J Invest Dermatol 132:394–400

    Article  CAS  PubMed  Google Scholar 

  • Thody AJ, Higgins EM, Wakamatsu K et al (1991) Pheomelanin as well as eumelanin is present in human epidermis. J Invest Dermatol 97:340–344

    Article  CAS  PubMed  Google Scholar 

  • Tomita Y, Kondo Y, Ito S et al (1992) Menkes’ disease: report of a case and determination of eumelanin and pheomelanin in hypopigmented hair. Dermatology 185:66–68

    Article  CAS  PubMed  Google Scholar 

  • Trujillo P, Summers PE, Ferrari E et al (2017) Contrast mechanisms associated with neuromelanin-MRI. Magn Reson Med 78:1790–1800

    Article  CAS  PubMed  Google Scholar 

  • Tsukamoto K, Jackson IJ, Urabe K et al (1992) A second tyrosinase-related protein, TRP-2, is a melanogenic enzyme termed DOPAchrome tautomerase. EMBO J 11:519–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valenzuela RK, Henderson MS, Walsh MH et al (2010) Predicting phenotype from genotype: normal pigmentation. J Forensic Sci 55:315–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Raamsdonk CD, Barsh GS, Wakamatsu K et al (2009) Independent regulation of hair and skin color by two G-protein-coupled pathways. Pigment Cell Melanoma Res 22:816–826

    Google Scholar 

  • Vsevolodov ED, Ito S, Wakamatsu K et al (1991) Comparative analysis of hair melanins by chemical and electron spin resonance methods. Pigment Cell Res 4:30–34

    Article  Google Scholar 

  • Wakamatsu K, Ito S, Rees JL (2002) The usefulness of 4-amino-3-hydroxyphenylalanine as a specific marker of pheomelanin. Pigment Cell Res 15:225–232

    Article  CAS  PubMed  Google Scholar 

  • Wakamatsu K, Fujikawa K, Zucca FA et al (2003) The structure of neuromelanin as studied by chemical degradative methods. J Neurochem 86:1015–1023

    Article  CAS  PubMed  Google Scholar 

  • Wakamatsu K, Kavanagh R, Kadekaro AL et al (2006) Diversity of pigmentation in cultured human melanocytes is due to differences in the type as well as quantity of melanin. Pigment Cell Res 19:154–162

    Article  CAS  PubMed  Google Scholar 

  • Wakamatsu K, Hu D-N, McCormick SA et al (2008) Characterization of melanin in human iridal and choroidal melanocytes from eyes with various colored irides. Pigment Cell Melanoma Res 21:97–105

    Article  CAS  PubMed  Google Scholar 

  • Wakamatsu K, Ohtara K, Ito S (2009) Chemical analysis of late stages of pheomelanogenesis: conversion of dihydrobenzothiazine to a benzothiazole structure. Pigment Cell Melanoma Res 22:474–486

    Article  CAS  PubMed  Google Scholar 

  • Wakamatsu K, Murase T, Zucca FA et al (2012a) Biosynthetic pathway to neuromelanin and its aging process. Pigment Cell Melanoma Res 25:792–803

    Google Scholar 

  • Wakamatsu K, Nakanishi Y, Miyazaki N et al (2012b) UVA-induced oxidative degradation of melanins: fission of indole moiety in eumelanin and conversion to benzothiazole moiety in pheomelanin. Pigment Cell Melanoma Res 25:434–445

    Article  CAS  PubMed  Google Scholar 

  • Wakamatsu K, Tanaka H, Tabuchi K et al (2014) Reduction of the nitro group to amine by hydroiodic acid to synthesize o-aminophenol derivatives as putative degradative markers of neuromelanin. Molecules 19:8039–8050

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wakamatsu K, Tabuchi K, Ojika M et al (2015) Norephinephrine and its metabolites are involved in the synthesis of neuromelanin derived from the locus coeruleus. J Neurochem 135:768–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wakamatsu K, Nagao A, Watanabe M et al (2017) Pheomelanogenesis is promoted at a weakly acidic pH. Pigment Cell Melanoma Res 30:372–377

    Article  CAS  PubMed  Google Scholar 

  • Walker WP, Gunn TM (2010) Shades of meaning: the pigment-type switching system as a tool for discovery. Pigment Cell Melanoma Res 23:485–495

    Article  CAS  PubMed  Google Scholar 

  • Wei ML (2006) Hermansky-Pudlak syndrome: a disease of protein trafficking and organelle function. Pigment Cell Res 19:19–42

    Article  CAS  PubMed  Google Scholar 

  • Weiter JJ, Delori FC, Wing GL et al (1986) Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes. Invest Ophthalmol Vis Sci 27:145–152

    CAS  PubMed  Google Scholar 

  • Yamamoto H, Takeuchi S, Kudo T et al (1989) Melanin production in cultured albino melanocytes transfected with mouse tyrosinase cDNA. Jpn J Genet 64:121–135

    Article  CAS  PubMed  Google Scholar 

  • Yoshizawa J, Abe Y, Oiso N et al (2014) Variants in melanogenesis-related genes associate with skin cancer risk among Japanese populations. J Dermatol 41:296–302

    Google Scholar 

  • Zadlo A, Szewczyk G, Sarna M et al (2019) Photobleaching of pheomelanin increases its phototoxic potential; physicochemical studies of synthetic pheomelanin subjected to aerobic photolysis. Pigment Cell Melanoma Res 32:359–372

    Google Scholar 

  • Zecca L, Stroppolo A, Gatti A et al (2004) The role of iron and copper molecules in the neuronal vulnerability of locus coeruleus and substantia nigra during aging. Proc Natl Acad Sci U S A 101:9843–9848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zecca L, Zucca FA, Albertini A et al (2006) A proposed dual role of neuromelanin in the pathogenesis of Parkinson’s disease. Neurology 67(7 Suppl 2):S8–S11

    Article  CAS  PubMed  Google Scholar 

  • Zecca L, Bellei C, Costi P et al (2008) New melanic pigments in the human brain that accumulate in aging and block environmental toxic metals. Proc Natl Acad Sci U S A 105:17567–17572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou D, Ota K, Nardin C et al (2018) Mammalian pigmentation is regulated by a distinct cAMP-dependent mechanism that controls melanosome pH. Sci Signal 11(555):eaau7987

    Google Scholar 

  • Zucca FA, Basso E, Cupaioli FA et al (2014) Neuromelanin of the human substantia nigra: an update. Neurotox Res 25:13–23

    Article  CAS  PubMed  Google Scholar 

  • Zucca FA, Segura-Aguilar J, Ferrari E et al (2017) Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson’s disease. Prog Neurobiol 155:96–119

    Google Scholar 

  • Zucca FA, Vanna R, Cupaioli FA et al (2018) Neuromelanin organelles are specialized autolysosomes that accumulate undegraded proteins and lipids in aging human brain and are likely involved in Parkinson’s disease. NPJ Parkinson's Dis 4:17

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank useful discussions with Dr. Tomohisa Hirobe and for his permission for allowing us to use the figure and table. And also thanks Professor Alexandre Roulin, Dr. Sylvain Dubey, and Assistant Professor Sanjay Premi for the permission to use the figure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazumasa Wakamatsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wakamatsu, K., Ito, S. (2021). Melanins in Vertebrates. In: Hashimoto, H., Goda, M., Futahashi, R., Kelsh, R., Akiyama, T. (eds) Pigments, Pigment Cells and Pigment Patterns. Springer, Singapore. https://doi.org/10.1007/978-981-16-1490-3_2

Download citation

Publish with us

Policies and ethics