iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-981-13-8950-4_25
CNN-Based Prostate Zonal Segmentation on T2-Weighted MR Images: A Cross-Dataset Study | SpringerLink
Skip to main content

CNN-Based Prostate Zonal Segmentation on T2-Weighted MR Images: A Cross-Dataset Study

  • Chapter
  • First Online:
Neural Approaches to Dynamics of Signal Exchanges

Abstract

Prostate cancer is the most common cancer among US men. However, prostate imaging is still challenging despite the advances in multi-parametric magnetic resonance imaging (MRI), which provides both morphologic and functional information pertaining to the pathological regions. Along with whole prostate gland segmentation, distinguishing between the central gland (CG) and peripheral zone (PZ) can guide toward differential diagnosis, since the frequency and severity of tumors differ in these regions; however, their boundary is often weak and fuzzy. This work presents a preliminary study on deep learning to automatically delineate the CG and PZ, aiming at evaluating the generalization ability of convolutional neural networks (CNNs) on two multi-centric MRI prostate datasets. Especially, we compared three CNN-based architectures: SegNet, U-Net, and pix2pix. In such a context, the segmentation performances achieved with/without pre-training were compared in 4-fold cross-validation. In general, U-Net outperforms the other methods, especially when training and testing are performed on multiple datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics, 2018. CA Cancer J. Clin. 68(1), 7–30 (2018)

    Article  Google Scholar 

  2. Rundo, L., Tangherloni, A., Nobile, M.S., Militello, C., Besozzi, D., Mauri, G., Cazzaniga, P.: MedGA: a novel evolutionary method for image enhancement in medical imaging systems. Expert Syst. Appl. 119, 387–399 (2019)

    Article  Google Scholar 

  3. Lemaître, G., Martí, R., Freixenet, J., Vilanova, J.C., Walker, P.M., Meriaudeau, F.: Computer-aided detection and diagnosis for prostate cancer based on mono and multi-parametric MRI: a review. Comput. Biol. Med. 60, 8–31 (2015)

    Article  Google Scholar 

  4. Villeirs, G.M., De Meerleer, G.O.: Magnetic resonance imaging (MRI) anatomy of the prostate and application of MRI in radiotherapy planning. Eur. J. Radiol. 63(3), 361–368 (2007)

    Article  Google Scholar 

  5. Rundo, L., Militello, C., Russo, G., Garufi, A., Vitabile, S., Gilardi, M.C., Mauri, G.: Automated prostate gland segmentation based on an unsupervised fuzzy c-means clustering technique using multispectral T1w and T2w MR imaging. Information 8(2), 49 (2017)

    Article  Google Scholar 

  6. Choi, Y.J., Kim, J.K., Kim, N., Kim, K.W., Choi, E.K., Cho, K.S.: Functional MR imaging of prostate cancer. Radiographics 27(1), 63–75 (2007)

    Article  Google Scholar 

  7. Niaf, E., Rouvière, O., Mège-Lechevallier, F., Bratan, F., Lartizien, C.: Computer-aided diagnosis of prostate cancer in the peripheral zone using multiparametric MRI. Phys. Med. Biol. 57(12), 3833 (2012)

    Article  Google Scholar 

  8. Haffner, J., Potiron, E., Bouyé, S., Puech, P., Leroy, X., Lemaitre, L., Villers, A.: Peripheral zone prostate cancers: location and intraprostatic patterns of spread at histopathology. Prostate 69(3), 276–282 (2009)

    Article  Google Scholar 

  9. Selman, S.H.: The McNeal prostate: a review. Urology 78(6), 1224–1228 (2011)

    Article  Google Scholar 

  10. Hoeks, C.M., Barentsz, J.O., Hambrock, T., Yakar, D., Somford, D.M., Heijmink, S.W., et al.: Prostate cancer: multiparametric MR imaging for detection, localization, and staging. Radiology 261(1), 46–66 (2011)

    Article  Google Scholar 

  11. Chang, Y., Chen, R., Yang, Q., Gao, X., Xu, C., Lu, J., Sun, Y.: Peripheral zone volume ratio (PZ-ratio) is relevant with biopsy results and can increase the accuracy of current diagnostic modality. Oncotarget 8(21), 34836 (2017)

    Article  Google Scholar 

  12. Kirby, R., Gilling, R.: Fast Facts: Benign Prostatic Hyperplasia, 7th edn. Health Press Limited, Abingdon, UK (2011)

    Book  Google Scholar 

  13. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  14. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI), vol. 9351 of LNCS, pp. 234–241. Springer (2015)

    Google Scholar 

  15. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. arXiv preprint arXiv:1611.07004 (2016)

  16. Tajbakhsh, N., Shin, J.Y., Gurudu, S.R., Hurst, R.T., Kendall, C.B., Gotway, M.B., Liang, J.: Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans. Med. Imaging 35(5), 1299–1312 (2016)

    Article  Google Scholar 

  17. Ghose, S., Oliver, A., Martí, R., Lladó, X., Vilanova, J.C., Freixenet, J., et al.: A survey of prostate segmentation methodologies in ultrasound, magnetic resonance and computed tomography images. Comput. Methods Prog. Biomed. 108(1), 262–287 (2012)

    Article  Google Scholar 

  18. Rundo, L., Militello, C., Russo, G., D’Urso, D., Valastro, L.M., Garufi, A., et al.: Fully automatic multispectral MR image segmentation of prostate gland based on the fuzzy c-means clustering algorithm. In: Multidisciplinary Approaches to Neural Computing, vol. 69 of Smart Innovation, Systems and Technologies, pp. 23–37. Springer (2018)

    Google Scholar 

  19. Klein, S., Van Der Heide, U.A., Lips, I.M., Van Vulpen, M., Staring, M., Pluim, J.P.: Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual information. Med. Phys. 35(4), 1407–1417 (2008)

    Article  Google Scholar 

  20. Martin, S., Troccaz, J., Daanen, V.: Automated segmentation of the prostate in 3D MR images using a probabilistic atlas and a spatially constrained deformable model. Med. Phys. 37(4), 1579–1590 (2010)

    Article  Google Scholar 

  21. Bevilacqua, V., Brunetti, A., Guerriero, A., Trotta, G.F., Telegrafo, M., Moschetta, M.: A performance comparison between shallow and deeper neural networks supervised classification of tomosynthesis breast lesions images. Cogn. Syst. Res. 53, 3–19 (2019)

    Article  Google Scholar 

  22. Guo, Y., Gao, Y., Shen, D.: Deformable MR prostate segmentation via deep feature learning and sparse patch matching. IEEE Trans. Med. Imaging 35(4), 1077–1089 (2016)

    Article  Google Scholar 

  23. Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: Proceedings of the 4th International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  24. Toth, R., Ribault, J., Gentile, J., Sperling, D., Madabhushi, A.: Simultaneous segmentation of prostatic zones using active appearance models with multiple coupled levelsets. Comput. Vis. Image Underst. 117(9), 1051–1060 (2013)

    Article  Google Scholar 

  25. Qiu, W., Yuan, J., Ukwatta, E., Sun, Y., Rajchl, M., Fenster, A.: Dual optimization based prostate zonal segmentation in 3D MR images. Med. Image Anal. 18(4), 660–673 (2014)

    Article  Google Scholar 

  26. Makni, N., Iancu, A., Colot, O., Puech, P., Mordon, S., Betrouni, N.: Zonal segmentation of prostate using multispectral magnetic resonance images. Med. Phys. 38(11), 6093–6105 (2011)

    Article  Google Scholar 

  27. AlBadawy, E.A., Saha, A., Mazurowski, M.A.: Deep learning for segmentation of brain tumors: Impact of cross-institutional training and testing. Med, Phys (2018)

    Google Scholar 

  28. Clark, T., Zhang, J., Baig, S., Wong, A., Haider, M.A., Khalvati, F.: Fully automated segmentation of prostate whole gland and transition zone in diffusion-weighted MRI using convolutional neural networks. J. Med. Imaging 4(4), 041307 (2017)

    Article  Google Scholar 

  29. Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: Proceedings of COMPSTAT’2010, pp. 177–186. Springer (2010)

    Google Scholar 

  30. Falk, T., Mai, D., Bensch, R., Çiçek, Ö., Abdulkadir, A., Marrakchi, Y., Böhm, A., Deubner, J., Jäckel, Z., Seiwald, K., et al.: U-Net: deep learning for cell counting, detection, and morphometry. Nat. Methods 16(1), 67 (2019)

    Article  Google Scholar 

  31. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  32. Litjens, G., Toth, R., van de Ven, W., Hoeks, C., Kerkstra, S., van Ginneken, B., et al.: Evaluation of prostate segmentation algorithms for MRI: the PROMISE12 challenge. Med. Image Anal. 18(2), 359–373 (2014)

    Article  Google Scholar 

  33. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., et al.: Generative adversarial nets. In: Proceedings of Advances in Neural Information Processing Systems (NIPS), pp. 2672–2680 (2014)

    Google Scholar 

  34. Han, C., Hayashi, H., Rundo, L., Araki, R., Shimoda, W., Muramatsu, S., et al.: GAN-based synthetic brain MR image generation. In: Proceedings of International Symposium on Biomedical Imaging (ISBI), pp. 734–738. IEEE (2018)

    Google Scholar 

  35. Kingma, D., Welling, M.: Auto-encoding variational Bayes. In: Proc. International Conference on Learning Representations (ICLR). arXiv preprint arXiv:1312.6114 (2014)

Download references

Acknowledgements

This work was partially supported by the Graduate Program for Social ICT Global Creative Leaders of The University of Tokyo by JSPS. We thank the Cannizzaro Hospital, Catania, Italy, for providing one of the imaging datasets analyzed in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Rundo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rundo, L. et al. (2020). CNN-Based Prostate Zonal Segmentation on T2-Weighted MR Images: A Cross-Dataset Study. In: Esposito, A., Faundez-Zanuy, M., Morabito, F., Pasero, E. (eds) Neural Approaches to Dynamics of Signal Exchanges. Smart Innovation, Systems and Technologies, vol 151. Springer, Singapore. https://doi.org/10.1007/978-981-13-8950-4_25

Download citation

Publish with us

Policies and ethics