iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-94-007-5561-1_3
Sodium/Potassium Homeostasis in the Cell | SpringerLink
Skip to main content

Sodium/Potassium Homeostasis in the Cell

  • Chapter
  • First Online:
Metallomics and the Cell

Part of the book series: Metal Ions in Life Sciences ((MILS,volume 12))

Abstract

All animals are characterized by steep gradients of Na+ and K+ across the plasma membrane, and in spite of their highly similar chemical properties, the ions can be distinguished by numerous channels and transporters. The gradients are generated by the Na+,K+-ATPase, or sodium pump, which pumps out Na+ and takes up K+ at the expense of the chemical energy from ATP. Because the membrane is more permeable to K+ than to Na+, the uneven ion distribution causes a transmembrane voltage difference, and this membrane potential forms the basis for the action potential and for much of the neuronal signaling in general. The potential energy stored in the concentration gradients is also used to drive a large number of the secondary transporters responsible for transmembrane carriage of solutes ranging from sugars, amino acids, and neurotransmitters to inorganic ions such as chloride, inorganic phosphate, and bicarbonate. Furthermore, Na+ and K+ themselves are important enzymatic cofactors that typically lower the energy barrier of substrate binding.

In this chapter, we describe the roles of Na+ and K+ in the animal cell with emphasis on the creation and usage of the steep gradients across the membrane. More than 50 years of Na+,K+-ATPase research has revealed many details of the molecular machinery and offered insights into how the pump is regulated by post-translational modifications and specific drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

A-domain:

actuator domain

ADP:

adenosine 5’-diphosphate

AMPA:

2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propanoic acid

ATP:

adenosine 5’-triphosphate

CCCs:

cation-chloride co-transporters

CNS:

central nervous system

EAATs:

excitatory amino acid transporters

ER:

endoplasmic reticulum

FHM2:

familial hemeplegic migraine 2

GABA:

γ-aminobutyric acid

GLUTs:

glucose transporters

KCCs:

K+-coupled Cl exporters

Kv :

voltage-gated K+ channels

LD50 :

lethal dose, 50%

LeuT:

leucine transporter

nAchR:

nicotinic acetylcholine receptor

NaPi:

Na+-coupled Pi symporter

Nav :

voltage-gated Na+ channels

Nax :

subfamily of voltage-gated sodium channels (formerly Nav2.1 in humans)

NCBTs:

sodium-coupled bicarbonate transporters

NCCs:

Na+-coupled Cl importers

N-domain:

nucleotide-binding domain

NHEs:

Na+-coupled H+ exporters

NKCCs:

Na+-coupled K+ and Cl importers

NSSs:

neurotransmitter sodium symporters

P-domain:

phosphorylation domain

Pi :

inorganic phosphate

PKA:

protein kinase A

PKC:

protein kinase C

RDP:

rapid-onset dystonia parkinsonism

SGLTs:

sodium-dependent glucose transporters

SSRIs:

selective serotonin re-uptake inhibitors

TMs:

transmembrane helices

References

  1. C. McCaig, A. Rajnicek, B. Song, M. Zhao, Physiol. Rev. 2005, 85, 943–1021.

    Article  PubMed  Google Scholar 

  2. E. Overton, Pflügers Arch. 1902, 92, 346–386.

    Article  CAS  Google Scholar 

  3. T. Danowski, J. Biol. Chem. 1941, 139, 693–705.

    CAS  Google Scholar 

  4. J. Harris, J. Biol. Chem. 1941, 141, 579–595.

    CAS  Google Scholar 

  5. H. Schatzmann, Helv. Physiol. Pharmacol. Acta 1953, 11, 346–400.

    CAS  Google Scholar 

  6. R. Post, P. Jolly, Biochim. Biophys. Acta 1957, 25, 118–146.

    Article  CAS  Google Scholar 

  7. J. Skou, Biochim. Biophys. Acta 1957, 23, 394–795.

    Article  CAS  Google Scholar 

  8. A. Mulkidjanian, A. Bychkov, D. Dibrova, M. Galperin, E. Koonin, Proc. Nat. Acad. Sci. USA 2012, 109, 30.

    Article  Google Scholar 

  9. D. Madern, C. Ebel, G. Zaccai, Extremophiles: Life under Extreme Conditions 2000, 4, 91–99.

    Article  CAS  Google Scholar 

  10. P. Yancey, J. Exper. Biol. 2005, 208, 2819–2849.

    CAS  Google Scholar 

  11. R. Vreeland, Crit. Rev. Microbiol. 1987, 14, 311–367.

    Article  PubMed  CAS  Google Scholar 

  12. S. Kennedy, W. Ng, S. Salzberg, L. Hood, S. DasSarma, Genome Res. 2001, 11, 1641–1691.

    Article  PubMed  CAS  Google Scholar 

  13. K. Collins, Biophys. J. 1997, 72, 65–141.

    Article  PubMed  CAS  Google Scholar 

  14. D. Doyle, J. Morais Cabral, R. Pfuetzner, A. Kuo, J. Gulbis, S. Cohen, B. Chait, R. MacKinnon, Science 1998, 280, 69–146.

    Article  PubMed  CAS  Google Scholar 

  15. D. Hall, C. Bond, G. Leonard, C. Watt, A. Berry, W. Hunter, J. Biol. Chem. 2002, 277, 22018–22042.

    CAS  Google Scholar 

  16. M. Page, E. Di Cera, Physiol. Rev. 2006, 86, 1049–1141.

    Article  PubMed  CAS  Google Scholar 

  17. N. Shibata, J. Masuda, T. Tobimatsu, T. Toraya, K. Suto, Y. Morimoto, N. Yasuoka, Structure 1999, 7, 997–2005.

    Article  PubMed  CAS  Google Scholar 

  18. E. Wilkens, A. Ringel, D. Hortig, T. Willke, K.-D. Vorlop, Appl. Microbiol. Biotechnol. 2012, 93, 1057–1120.

    Article  PubMed  CAS  Google Scholar 

  19. T. Larsen, M. Benning, I. Rayment, G. Reed, Biochemistry 1998, 37, 6247–6302.

    Article  PubMed  CAS  Google Scholar 

  20. M. Toney, E. Hohenester, J. Keller, J. Jansonius, J. Mol. Biol. 1995, 245, 151–230.

    CAS  Google Scholar 

  21. A. Pineda, C. Carrell, L. Bush, S. Prasad, S. Caccia, Z.-W. Chen, F. Mathews, E. Di Cera, J. Biol. Chem. 2004, 279, 31842–31895.

    CAS  Google Scholar 

  22. S. Brohawn, J. del Mármol, R. MacKinnon, Science 2012, 335, 436–477.

    Article  PubMed  CAS  Google Scholar 

  23. A. Miller, S. Long, Science 2012, 335, 432–438.

    Article  PubMed  CAS  Google Scholar 

  24. K. Svoboda, D. Tank, W. Denk, Science 1996, 272, 716–725.

    Article  PubMed  CAS  Google Scholar 

  25. C. Rose, A. Konnerth, J. Neurosci. 2001, 21, 4207–4221.

    PubMed  CAS  Google Scholar 

  26. J. Kim, I. Sizov, M. Dobretsov, H. von Gersdorff, Nature Neuroscience 2007, 10, 196–401.

    Article  PubMed  CAS  Google Scholar 

  27. S. Pulver, L. Griffith, Nature Neuroscience 2010, 13, 53–62.

    Article  PubMed  CAS  Google Scholar 

  28. A. Chakrabarti, D. Deamer, Biochim. Biophys. Acta 1992, 1111, 171–178.

    Article  CAS  Google Scholar 

  29. M. Roux, S. Supplisson, Neuron 2000, 25, 373–456.

    Article  PubMed  CAS  Google Scholar 

  30. M. Hahn, R. Blakely, Pharmacogenomics J. 2002, 2, 217–252.

    Article  PubMed  CAS  Google Scholar 

  31. N. Zerangue, M. Kavanaugh, Nature 1996, 383, 634–641.

    Article  PubMed  CAS  Google Scholar 

  32. S. Lachheb, F. Cluzeaud, M. Bens, M. Genete, H. Hibino, S. Lourdel, Y. Kurachi, A. Vandewalle, J. Teulon, M. Paulais, Am. J. Physiology. Renal Physiology 2008, 294, 407.

    Google Scholar 

  33. P. Welling, K. Ho, Am. J. Physiology. Renal Physiology 2009, 297, 63.

    Article  Google Scholar 

  34. S. Adibi, S. Gray, E. Menden, Am. J. Clin. Nutrition 1967, 20, 24–57.

    CAS  Google Scholar 

  35. S. Bröer, Physiol. Rev. 2008, 88, 249–335.

    Article  PubMed  Google Scholar 

  36. E. Wright, D. Loo, B. Hirayama, Physiol. Rev. 2011, 91, 733–827.

    Article  PubMed  CAS  Google Scholar 

  37. H. Krishnamurthy, E. Gouaux, Nature 2012, 481, 469–543.

    Article  PubMed  CAS  Google Scholar 

  38. A. Yamashita, S. Singh, T. Kawate, Y. Jin, E. Gouaux, Nature 2005, 437, 215–238.

    Article  PubMed  CAS  Google Scholar 

  39. Y. Zhao, M. Quick, L. Shi, E. Mehler, H. Weinstein, J. Javitch, Nature Chem. Biol. 2010, 6, 109–125.

    CAS  Google Scholar 

  40. L. Forrest, R. Krämer, C. Ziegler, Biochim. Biophys. Acta 2011, 1807, 167–255.

    Article  CAS  Google Scholar 

  41. F. Lang, G. Busch, H. Völkl, Cell. Physiol. Biochem.: Int. J. Exper. Cell. Physiol., Biochem., Pharmacol. 1998, 8, 1–46.

    Google Scholar 

  42. C. Lytle, J. Biol. Chem. 1997, 272, 15069–15146.

    CAS  Google Scholar 

  43. J. Russell, Physiol. Rev. 2000, 80, 211–287.

    PubMed  CAS  Google Scholar 

  44. T. Zeuthen, N. Macaulay, J. Physiol. 2012, 590, 1139–1193.

    PubMed  CAS  Google Scholar 

  45. P. Dunham, G. Stewart, J. Ellory, Proc. Nat. Acad. Sci. USA 1980, 77, 1711–1716.

    Article  CAS  Google Scholar 

  46. G. Gamba, Physiol. Rev. 2005, 85, 423–516.

    Article  PubMed  CAS  Google Scholar 

  47. K. Kahle, J. Rinehart, A. Ring, I. Gimenez, G. Gamba, S. Hebert, R. Lifton, Physiology 2006, 21, 326–361.

    Article  PubMed  CAS  Google Scholar 

  48. A. Alizadeh Naderi, R. Reilly, Nature Rev. Nephrology 2010, 6, 657–722.

    PubMed  CAS  Google Scholar 

  49. I. Forster, N. Hernando, J. Biber, H. Murer, Kidney Int. 2006, 70, 1548–1607.

    Article  PubMed  CAS  Google Scholar 

  50. W. Boron, J. Am. Soc. Nephrol.: JASN 2006, 17, 2368–2450.

    Google Scholar 

  51. I. Choi, H. Soo Yang, W. Boron, J. Physiol. 2007, 578, 131–173.

    Article  PubMed  CAS  Google Scholar 

  52. S. Hebert, D. Mount, G. Gamba, Pflügers Arch.: Eur. J. Physiol. 2004, 447, 580–673.

    Google Scholar 

  53. K. Hinchcliff, P. Morley, A. Guthrie, J. Am. Vet. Med. Assoc. 2009, 235, 76–158.

    Article  PubMed  Google Scholar 

  54. J. Kyte, J. Biol. Chem. 1971, 246, 4157–4222.

    CAS  Google Scholar 

  55. E. Cayanis, H. Bayley, I. Edelman, J. Biol. Chem. 1990, 265, 10829–10864.

    CAS  Google Scholar 

  56. K. Geering, FEBS Lett. 1991, 285, 189–282.

    Article  PubMed  CAS  Google Scholar 

  57. K. Geering, J. Kraehenbuhl, B. Rossier, J. Cell Biol. 1987, 105, 2613–2622.

    Article  PubMed  CAS  Google Scholar 

  58. G. Crambert, K. Geering, Science’s STKE: Signal Transduction Knowledge Environment 2003, 2003.

    Google Scholar 

  59. K. McGrail, J. Phillips, K. Sweadner, J. Neurosci. 1991, 11, 381–472.

    PubMed  CAS  Google Scholar 

  60. P. Bøttger, Z. Tracz, A. Heuck, P. Nissen, M. Romero-Ramos, K. Lykke-Hartmann, J. Compar. Neurol. 2011, 519, 376-780.

    Google Scholar 

  61. P. Lucchesi, K. Sweadner, J. Biol. Chem. 1991, 266, 9327–9358.

    CAS  Google Scholar 

  62. J. F. Hoffman, Proc. Nat. Acad. Sci. USA 2002, 99.

    Google Scholar 

  63. J. Hlivko, S. Chakraborty, T. Hlivko, A. Sengupta, P. James, Mol. Reprod. Devel. 2006, 73, 101–116.

    Article  PubMed  CAS  Google Scholar 

  64. A. Woo, P. James, J. Lingrel, J. Membr. Biol. 1999, 169, 39–83.

    CAS  Google Scholar 

  65. G. Blanco, Seminars in Nephrology 2005, 25, 292–595.

    Article  PubMed  CAS  Google Scholar 

  66. P. L. Pedersen, E. Carafoli, Trends Biochem. Sci., 1987 , 12, 146–296.

    CAS  Google Scholar 

  67. M. Palmgren, P. Nissen, Annu. Rev. Biophys. 2011, 40, 243–309.

    Article  PubMed  CAS  Google Scholar 

  68. O. Vagin, L. Dada, E. Tokhtaeva, G. Sachs, Am. J. physiol. Cell Physiol. 2012.

    Google Scholar 

  69. R. Albers, Annu. Rev. Biochem. 1967, 36, 727–783.

    Article  PubMed  CAS  Google Scholar 

  70. R. Post, S. Kume, T. Tobin, B. Orcutt, A. Sen, J. Gen. Physiol. 1969, 54, 306–332.

    CAS  Google Scholar 

  71. J. Morth, B. Pedersen, M. Toustrup-Jensen, T. Sørensen, J. Petersen, J. Andersen, B. Vilsen, P. Nissen, Nature 2007, 450, 1043–1052.

    Article  PubMed  CAS  Google Scholar 

  72. T. Shinoda, H. Ogawa, F. Cornelius, C. Toyoshima, Nature 2009, 459, 446–496.

    Article  PubMed  CAS  Google Scholar 

  73. C. Olesen, M. Picard, A.-M. L. Winther, C. Gyrup, J. Morth, C. Oxvig, J. Møller, P. Nissen, Nature 2007, 450, 1036–1078.

    Article  PubMed  CAS  Google Scholar 

  74. C. Olesen, T. Sørensen, R. Nielsen, J. Møller, P. Nissen, Science 2004, 306, 2251–2256.

    Article  PubMed  CAS  Google Scholar 

  75. T. Sørensen, J. Clausen, A.-M. L. Jensen, B. Vilsen, J. Møller, J. Andersen, P. Nissen, J. Biol. Chem. 2004, 279, 46355–46363.

    Google Scholar 

  76. C. Toyoshima, T. Mizutani, Nature 2004, 430, 529–564.

    Article  PubMed  CAS  Google Scholar 

  77. C. Toyoshima, M. Nakasako, H. Nomura, H. Ogawa, Nature 2000, 405, 647–702.

    Article  PubMed  CAS  Google Scholar 

  78. C. Toyoshima, H. Nomura, Nature 2002, 418, 605–616.

    Article  PubMed  CAS  Google Scholar 

  79. C. Toyoshima, H. Nomura, T. Tsuda, Nature 2004, 432, 361–369.

    Article  PubMed  CAS  Google Scholar 

  80. R. Rakowski, D. Gadsby, P. De Weer, J. Gen. Physiol. 1989, 93, 903–944.

    CAS  Google Scholar 

  81. S. Despa, J. Bossuyt, F. Han, K. Ginsburg, L.-G. Jia, H. Kutchai, A. Tucker, D. Bers, Circulat. Res. 2005, 97, 252–261.

    Article  PubMed  CAS  Google Scholar 

  82. C. Palmer, B. Scott, L. Jones, J. Biol. Chem. 1991, 266, 11126–11156.

    CAS  Google Scholar 

  83. H. Poulsen, P. Morth, J. Egebjerg, P. Nissen, FEBS Lett. 2010, 584, 2589–2684.

    Article  PubMed  CAS  Google Scholar 

  84. Z.-Q. Wu, J. Chen, Z.-Q. Chi, J.-G. Liu, Mol. Pharmacol. 2007, 71, 519–549.

    Article  PubMed  Google Scholar 

  85. H. Rasmussen, E. Hamilton, C.-C. Liu, G. Figtree, Trends Cardiovasc. Med. 2010, 20, 85–175.

    CAS  Google Scholar 

  86. S. Bibert, C.-C. Liu, G. Figtree, A. Garcia, E. Hamilton, F. Marassi, K. Sweadner, F. Cornelius, K. Geering, H. Rasmussen, J. Biol. Chem. 2011, 286, 18562–18634.

    CAS  Google Scholar 

  87. D. Alves, G. Farr, P. Seo-Mayer, M. Caplan, Molecul. Biol. Cell 2010, 21, 4400–4408.

    CAS  Google Scholar 

  88. H. Blom, D. Rönnlund, L. Scott, Z. Spicarova, J. Widengren, A. Bondar, A. Aperia, H. Brismar, BMC Neuroscience 2011, 12, 16.

    Article  PubMed  CAS  Google Scholar 

  89. H. Shimizu, E. Watanabe, T. Hiyama, A. Nagakura, A. Fujikawa, H. Okado, Y. Yanagawa, K. Obata, M. Noda, Neuron 2007, 54, 59–131.

    Article  PubMed  CAS  Google Scholar 

  90. S. Santos, B. Manadas, C. Duarte, A. Carvalho, J. Proteome Res. 2010, 9, 1670–1752.

    Article  PubMed  CAS  Google Scholar 

  91. D. Zhang, Q. Hou, M. Wang, A. Lin, L. Jarzylo, A. Navis, A. Raissi, F. Liu, H.-Y. Man, J. Neuroscience 2009, 29, 4498–5009.

    Article  CAS  Google Scholar 

  92. J. Heiny, V. Kravtsova, F. Mandel, T. Radzyukevich, B. Benziane, A. Prokofiev, S. Pedersen, A. Chibalin, I. Krivoi, J. Biol. Chem. 2010, 285, 28614–28640.

    CAS  Google Scholar 

  93. M. Doi, K. Iwasaki, Mol. Cell. Neurosci. 2008, 38, 548–606.

    Article  PubMed  CAS  Google Scholar 

  94. B. Cassels, J. Ethnopharmacol. 1985, 14, 273–354.

    Article  PubMed  CAS  Google Scholar 

  95. D. Watt, J. Simard, P. Mancuso, Comp. Biochem. Physiol. A, Comp. Physiol. 1982, 71, 375–457.

    Google Scholar 

  96. S. Zhan, C. Merlin, J. Boore, S. Reppert, Cell 2011, 147, 1171–1256.

    Article  PubMed  CAS  Google Scholar 

  97. E. Labeyrie, S. Dobler, Mol. Biol. Evolut. 2004, 21, 218–239.

    Article  CAS  Google Scholar 

  98. Z. Li, Z. Xie, Pflügers Arch.: Eur. J. Physiol. 2009, 457, 635–679.

    Google Scholar 

  99. D. Hilgemann, Proc. Nat. Acad. Sci. USA 2003, 100, 386–394.

    Article  CAS  Google Scholar 

  100. M. De Fusco, R. Marconi, L. Silvestri, L. Atorino, L. Rampoldi, L. Morgante, A. Ballabio, P. Aridon, G. Casari, Nature Genetics 2003, 33, 192–198.

    Article  PubMed  Google Scholar 

  101. P. de Carvalho Aguiar, K. Sweadner, J. Penniston, J. Zaremba, L. Liu, M. Caton, G. Linazasoro, M. Borg, M. Tijssen, S. Bressman, W. Dobyns, A. Brashear, L. Ozelius, Neuron 2004, 43, 169–244.

    Article  PubMed  Google Scholar 

  102. P. Bøttger, C. Doğanlı, K. Lykke-Hartmann, Neurosci. Biobehav. Rev. 2012, 36, 855–926.

    Article  PubMed  Google Scholar 

  103. K. Axelsen, M. Palmgren, J. Mol. Evolut. 1998, 46, 84–185.

    Article  CAS  Google Scholar 

  104. H. Poulsen, H. Khandelia, J. Morth, M. Bublitz, O. Mouritsen, J. Egebjerg, P. Nissen, Nature 2010, 467, 99–201.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Poul Nissen for advice and support. MJC and HP were funded by the Danish National Research Center PUMPKIN and HP by The Lundbeck Foundation, The Carlsberg Foundation, and L’Oréal/UNESCO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanne Poulsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Clausen, M.J.V., Poulsen, H. (2013). Sodium/Potassium Homeostasis in the Cell. In: Banci, L. (eds) Metallomics and the Cell. Metal Ions in Life Sciences, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5561-1_3

Download citation

Publish with us

Policies and ethics