iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-94-007-4719-7_1
Introduction to Purinergic Signalling in the Brain | SpringerLink
Skip to main content

Introduction to Purinergic Signalling in the Brain

  • Chapter
  • First Online:
Glioma Signaling

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 986))

Abstract

ATP is a cotransmitter with glutamate, noradrenaline, GABA, acetylcholine and dopamine in the brain. There is a widespread presence of both adenosine (P1) and P2 nucleotide receptors in the brain on both neurons and glial cells. Adenosine receptors play a major role in presynaptic neuromodulation, while P2X ionotropic receptors are involved in fast synaptic transmission and synaptic plasticity. P2Y G protein-coupled receptors are largely involved in presynaptic activities, as well as mediating long-term (trophic) signalling in cell proliferation, differentiation and death during development and regeneration. Both P1 and P2 receptors participate in neuron-glial interactions. Purinergic signalling is involved in control of cerebral vascular tone and remodelling and has been implicated in learning and memory, locomotor and feeding behaviour and sleep. There is increasing interest in the involvement of purinergic signalling in the pathophysiology of the CNS, including trauma, ischaemia, epilepsy, neurodegenerative diseases, neuropsychiatric and mood disorders, and cancer, including gliomas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ACh:

Acetylcholine

ADP:

Adenosine diphosphate

ATP:

Adenosine 5′-triphosphate

bFGF:

Basic fibroblast growth factor

CNS:

Central nervous system

CREB:

cAMP response element-binding protein

E-NPPs:

Ecto-nucleotide pyrophosphatase/phosphodiesterases

E-NTPDases:

Ecto-nucleoside triphosphate diphosphohydrolase

GABA:

γ-Amino butyric acid

IL-6:

Interleukin-6

NA:

Noradrenaline

UDP:

Uridine diphosphate

UTP:

Uridine 5′-triphosphate

TMZ:

Temozolomide

References

  • Abbracchio MP (1997) ATP in brain function. In: Jacobson KA, Jarvis MF (eds) Purinergic approaches in experimental therapeutics. Wiley-Liss, New York

    Google Scholar 

  • Abbracchio MP, Burnstock G (1994) Purinoceptors: are there families of P2X and P2Y purinoceptors? Pharmacol Ther 64:445–475

    PubMed  CAS  Google Scholar 

  • Abbracchio MP, Burnstock G (1998) Purinergic signalling: pathophysiological roles. Jpn J Pharmacol 78:113–145

    PubMed  CAS  Google Scholar 

  • Antoniou K, Papadopoulou-Daifoti Z, Hyphantis T, Papathanasiou G, Bekris E, Marselos M, Panlilio L, Muller CE, Goldberg SR, Ferre S (2005) A detailed behavioral analysis of the acute motor effects of caffeine in the rat: involvement of adenosine A1 and A2A receptors. Psychopharmacology (Berl) 183:154–162

    CAS  Google Scholar 

  • Arrigoni E, Chamberlin NL, Saper CB, McCarley RW (2003) The effects of adenosine on the membrane properties of basal forebrain cholinergic neurons. Sleep 26:45–50

    Google Scholar 

  • Ballerini P, Di Iorio P, Caciagli F, Rathbone MP, Jiang S, Nargi E, Buccella S, Giuliani P, D’Alimonte I, Fischione G, Masciulli A, Romano S, Ciccarelli R (2006) P2Y2 receptor up-regulation induced by guanosine or UTP in rat brain cultured astrocytes. Int J Immunopathol Pharmacol 19:293–308

    PubMed  CAS  Google Scholar 

  • Barberis C, McIlwain H (1976) 5′-Adenine mononucleotides in synaptosomal preparations from guinea pig neocortex: their change on incubation, superfusion and stimulation. J Neurochem 26:1015–1021

    PubMed  CAS  Google Scholar 

  • Bardoni R, Goldstein PA, Lee CJ, Gu JG, MacDermott AB (1997) ATP P2X receptors mediate fast synaptic transmission in the dorsal horn of the rat spinal cord. J Neurosci 17:5297–5304

    PubMed  CAS  Google Scholar 

  • Barraco RA, Coffin VL, Altman HJ, Phillis JW (1983) Central effects of adenosine analogs on locomotor activity in mice and antagonism of caffeine. Brain Res 272:392–395

    PubMed  CAS  Google Scholar 

  • Barraco RA, Martens KA, Parizon M, Normile HJ (1993) Adenosine A2a receptors in the nucleus accumbens mediate locomotor depression. Brain Res Bull 31:397–404

    PubMed  CAS  Google Scholar 

  • Basheer R, Strecker RE, Thakkar MM, McCarley RW (2004) Adenosine and sleep-wake regulation. Prog Neurobiol 73:379–396

    PubMed  CAS  Google Scholar 

  • Belcher SM, Zsarnovszky A, Crawford PA, Hemani H, Spurling L, Kirley TL (2006) Immunolocalization of ecto-nucleoside triphosphate diphosphohydrolase 3 in rat brain: implications for modulation of multiple homeostatic systems including feeding and sleep-wake behaviors. Neuroscience 137:1331–1346

    PubMed  CAS  Google Scholar 

  • Bo X, Burnstock G (1994) Distribution of [3H]alpha, beta-methylene ATP binding sites in rat brain and spinal cord. Neuroreport 5:1601–1604

    PubMed  CAS  Google Scholar 

  • Bowser DN, Khakh BS (2007) Vesicular ATP is the predominant cause of intercellular calcium waves in astrocytes. J Gen Physiol 129:485–491

    PubMed  CAS  Google Scholar 

  • Braganhol E, Morrone FB, Bernardi A, Huppes D, Meurer L, Edelweiss MI, Lenz G, Wink MR, Robson SC, Battastini AM (2009) Selective NTPDase2 expression modulates in vivo rat glioma growth. Cancer Sci 100:1434–1442

    PubMed  CAS  Google Scholar 

  • Brake AJ, Wagenbach MJ, Julius D (1994) New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor. Nature 371:519–523

    PubMed  CAS  Google Scholar 

  • Brambilla R, Cottini L, Fumagalli M, Ceruti S, Abbracchio MP (2003) Blockade of A2A adenosine receptors prevents basic fibroblast growth factor-induced reactive astrogliosis in rat striatal primary astrocytes. Glia 43:190–194

    PubMed  Google Scholar 

  • Brockhaus J, Dressel D, Herold S, Deitmer JW (2004) Purinergic modulation of synaptic input to Purkinje neurons in rat cerebellar brain slices. Eur J Neurosci 19:2221–2230

    PubMed  Google Scholar 

  • Buller KM, Khanna S, Sibbald JR, Day TA (1996) Central noradrenergic neurons signal via ATP to elicit vasopressin responses to haemorrhage. Neuroscience 73:637–642

    PubMed  CAS  Google Scholar 

  • Burnstock G (1972) Purinergic nerves. Pharmacol Rev 24:509–581

    PubMed  CAS  Google Scholar 

  • Burnstock G (1976) Purinergic receptors. J Theor Biol 62:491–503

    PubMed  CAS  Google Scholar 

  • Burnstock G (1978) A basis for distinguishing two types of purinergic receptor. In: Straub RW, Bolis L (eds) Cell membrane receptors for drugs and hormones: a multidisciplinary approach. Raven Press, New York

    Google Scholar 

  • Burnstock G (1996) Purinergic neurotransmission. Semin Neurosci 8:171–174

    Google Scholar 

  • Burnstock G (2003) Purinergic receptors in the nervous system. In: Schwiebert EM (ed) Purinergic receptors and signalling. Academic, San Diego

    Google Scholar 

  • Burnstock G (2007a) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87:659–797

    PubMed  CAS  Google Scholar 

  • Burnstock G (2007b) Purine and pyrimidine receptors. Cell Mol Life Sci 64:1471–1483

    PubMed  CAS  Google Scholar 

  • Burnstock G (2008) Purinergic signalling and disorders of the central nervous system. Nat Rev Drug Discov 7:575–590

    PubMed  CAS  Google Scholar 

  • Burnstock G (2009) Purinergic cotransmission. Exp Physiol 94:20–24

    PubMed  CAS  Google Scholar 

  • Burnstock G, Kennedy C (1985) Is there a basis for distinguishing two types of P2-purinoceptor? Gen Pharmacol 16:433–440

    PubMed  CAS  Google Scholar 

  • Burnstock G, Knight GE (2004) Cellular distribution and functions of P2 receptor subtypes in different systems. Int Rev Cytol 240:31–304

    PubMed  CAS  Google Scholar 

  • Carrasquero LM, Delicado EG, Jimenez AI, Perez-Sen R, Miras-Portugal MT (2005) Cerebellar astrocytes co-express several ADP receptors. Presence of functional P2Y(13)-like receptors. Purinergic Signal 1:153–159

    PubMed  CAS  Google Scholar 

  • Claes P, Slegers H (2004) P2Y receptor activation affects the proliferation and differentiation of glial and neuronal cells: a focus on rat C6 glioma cells. Curr Neuropharmacol 2:207–220

    CAS  Google Scholar 

  • Coco S, Calegari F, Pravettoni E, Pozzi D, Taverna E, Rosa P, Matteoli M, Verderio C (2003) Storage and release of ATP from astrocytes in culture. J Biol Chem 278:1354–1362

    PubMed  CAS  Google Scholar 

  • Cotrina ML, Lin JH, Lopez-Garcia JC, Naus CC, Nedergaard M (2000) ATP-mediated glia signaling. J Neurosci 20:2835–2844

    PubMed  CAS  Google Scholar 

  • Cunha RA, Ribeiro JA (2000) ATP as a presynaptic modulator. Life Sci 68:119–137

    PubMed  CAS  Google Scholar 

  • Diaz-Hernandez M, Pintor J, Castro E, Miras-Portugal MT (2002) Co-localisation of functional nicotinic and ionotropic nucleotide receptors in isolated cholinergic synaptic terminals. Neuropharmacology 42:20–33

    PubMed  CAS  Google Scholar 

  • Duan S, Neary JT (2006) P2X(7) receptors: properties and relevance to CNS function. Glia 54:738–746

    PubMed  Google Scholar 

  • Dubyak GR (1991) Signal transduction by P2-purinergic receptors for extracellular ATP. Am J Respir Cell Mol Biol 4:295–300

    PubMed  CAS  Google Scholar 

  • Dubyak GR (2006) ATP release mechanisms. In: Burnstock G, Arnett TR (eds) Edited monograph: nucleotides and regulation of bone cell function. Taylor & Francis, Boca Raton

    Google Scholar 

  • Dunwiddie TV (1985) The physiological role of adenosine in the central nervous system. Int Rev Neurobiol 27:63–139

    PubMed  CAS  Google Scholar 

  • Dunwiddie TV, Masino SA (2001) The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci 24:31–55

    PubMed  CAS  Google Scholar 

  • Edwards FA, Gibb AJ, Colquhoun D (1992) ATP receptor-mediated synaptic currents in the central nervous system. Nature 359:144–147

    PubMed  CAS  Google Scholar 

  • Eroglu L, Tuna R, Caglayan B (1996) Effects of nifedipine and Bay K 8644 on the R-PIA and caffeine-induced changes in the locomotor activity of rats. Pharmacol Res 33:141–144

    PubMed  CAS  Google Scholar 

  • Feldberg W, Sherwood SL (1954) Injections of drugs into the lateral ventricle of the cat. J Physiol 123:148–167

    PubMed  CAS  Google Scholar 

  • Fields RD, Burnstock G (2006) Purinergic signalling in neuron-glia interactions. Nat Rev Neurosci 7:423–436

    PubMed  CAS  Google Scholar 

  • Fredholm BB (1995) Purinoceptors in the nervous system. Pharmacol Toxicol 76:228–239

    PubMed  CAS  Google Scholar 

  • Fujii S, Sasaki H, Mikoshiba K, Kuroda Y, Yamazaki Y, Mostafa Taufiq A, Kato H (2004) A chemical LTP induced by co-activation of metabotropic and N-methyl-D-aspartate glutamate receptors in hippocampal CA1 neurons. Brain Res 999:20–28

    PubMed  CAS  Google Scholar 

  • Fumagalli M, Brambilla R, D’Ambrosi N, Volonte C, Matteoli M, Verderio C, Abbracchio MP (2003) Nucleotide-mediated calcium signaling in rat cortical astrocytes: role of P2X and P2Y receptors. Glia 43:218–203

    PubMed  Google Scholar 

  • Gibb AJ, Halliday FC (1996) Fast purinergic transmission in the central nervous system. Semin Neurosci 8:225–232

    CAS  Google Scholar 

  • Gordon JL (1986) Extracellular ATP: effects, sources and fate. Biochem J 233:309–319

    PubMed  CAS  Google Scholar 

  • Ho MCK, Simon J, Barnard EA, Wong YH (2004) Atypical regulation of calcium signals in astrocytoma 1321N1 cells expressing the purinergic P2Y12 receptor. J Neurochem 88:84

    Google Scholar 

  • Illes P, Alexandre Ribeiro J (2004) Molecular physiology of P2 receptors in the central nervous system. Eur J Pharmacol 483:5–17

    PubMed  CAS  Google Scholar 

  • Illes P, Zimmermann H (1999) Nucleotides and their receptors in the nervous system. Prog Brain Res 120:1–432

    Google Scholar 

  • Illes P, Wirkner K, Nörenberg W, Masino SA, Dunwiddie TV (2001) Interaction between the transmitters ATP and glutamate in the central nervous system. Drug Dev Res 52:76–82

    CAS  Google Scholar 

  • Inoue K, Koizumi S, Ueno S (1996) Implication of ATP receptors in brain functions. Prog Neurobiol 50:483–492

    PubMed  CAS  Google Scholar 

  • Jantaratnotai N, Choi HB, McLarnon JG (2009) ATP stimulates chemokine production via a store-operated calcium entry pathway in C6 glioma cells. BMC Cancer 9:442

    PubMed  Google Scholar 

  • Jo YH, Role LW (2002) Coordinate release of ATP and GABA at in vitro synapses of lateral hypothalamic neurons. J Neurosci 22:4794–4804

    PubMed  CAS  Google Scholar 

  • Judelson DA, Armstrong LE, Sokmen B, Roti MW, Casa DJ, Kellogg MD (2005) Effect of chronic caffeine intake on choice reaction time, mood, and visual vigilance. Physiol Behav 85:629–634

    PubMed  CAS  Google Scholar 

  • Kanjhan R, Housley GD, Thorne PR, Christie DL, Palmer DJ, Luo L, Ryan AF (1996) Localization of ATP-gated ion channels in cerebellum using P2x2R subunit-specific antisera. Neuroreport 7:2665–2669

    PubMed  CAS  Google Scholar 

  • Kanjhan R, Housley GD, Burton LD, Christie DL, Kippenberger A, Thorne PR, Luo L, Ryan AF (1999) Distribution of the P2X2 receptor subunit of the ATP-gated ion channels in the rat central nervous system. J Comp Neurol 407:11–32

    PubMed  CAS  Google Scholar 

  • Kapoor JR, Sladek CD (2000) Purinergic and adrenergic agonists synergize in stimulating vasopressin and oxytocin release. J Neurosci 20:8868–8875

    PubMed  CAS  Google Scholar 

  • Katayama M, Kawaguchi T, Berger MS, Pieper RO (2007) DNA damaging agent-induced autophagy produces a cytoprotective adenosine triphosphate surge in malignant glioma cells. Cell Death Differ 14:548–558

    PubMed  CAS  Google Scholar 

  • Kato F, Kawamura M, Shigetomi E, Tanaka J, Inoue K (2004) ATP- and adenosine-mediated signaling in the central nervous system: synaptic purinoceptors: the stage for ATP to play its “dual-role”. J Pharmacol Sci 94:107–111

    PubMed  CAS  Google Scholar 

  • Khakh BS (2001) Molecular physiology of P2X receptors and ATP signalling at synapses. Nat Rev Neurosci 2:165–174

    PubMed  CAS  Google Scholar 

  • Khakh BS, Fisher JA, Nashmi R, Bowser DN, Lester HA (2005) An angstrom scale interaction between plasma membrane ATP-gated P2X2 and alpha4beta2 nicotinic channels measured with fluorescence resonance energy transfer and total internal reflection fluorescence microscopy. J Neurosci 25:6911–6920

    PubMed  CAS  Google Scholar 

  • Kittner H, Krugel U, Hoffmann E, Illes P (2004) Modulation of feeding behaviour by blocking purinergic receptors in the rat nucleus accumbens: a combined microdialysis, electroencephalographic and behavioural study. Eur J Neurosci 19:396–404

    PubMed  CAS  Google Scholar 

  • Kittner H, Franke H, Harsch JI, El-Ashmawy IM, Seidel B, Krugel U, Illes P (2006) Enhanced food intake after stimulation of hypothalamic P2Y1 receptors in rats: modulation of feeding behaviour by extracellular nucleotides. Eur J Neurosci 24:2049–2056

    PubMed  Google Scholar 

  • Kogure K, Alonso OF (1978) A pictorial representation of endogenous brain ATP by a bioluminescent method. Brain Res 154:273–284

    PubMed  CAS  Google Scholar 

  • Krugel U, Kittner H, Franke H, Illes P (2003) Purinergic modulation of neuronal activity in the mesolimbic dopaminergic system in vivo. Synapse 47:134–142

    PubMed  CAS  Google Scholar 

  • Krugel U, Spies O, Regenthal R, Illes P, Kittner H (2004) P2 receptors are involved in the mediation of motivation-related behavior. Purinergic Signal 1:21–29

    PubMed  Google Scholar 

  • Kukulski F, Sevigny J, Komoszynski M (2004) Comparative hydrolysis of extracellular adenine nucleotides and adenosine in synaptic membranes from porcine brain cortex, hippocampus, cerebellum and medulla oblongata. Brain Res 1030:49–56

    PubMed  CAS  Google Scholar 

  • Kuzmin A, Johansson B, Gimenez L, Ogren SO, Fredholm BB (2006) Combination of adenosine A1 and A2A receptor blocking agents induces caffeine-like locomotor stimulation in mice. Eur Neuropsychopharmacol 16:129–136

    PubMed  CAS  Google Scholar 

  • Lakshmi S, Joshi PG (2006) Activation of Src/kinase/phospholipase C/mitogen-activated protein kinase and induction of neurite expression by ATP, independent of nerve growth factor. Neuroscience 141:179–189

    PubMed  CAS  Google Scholar 

  • Levine AS, Morley JE (1982) Purinergic regulation of food intake. Science 217:77–79

    PubMed  CAS  Google Scholar 

  • Llewellyn-Smith IJ, Burnstock G (1998) Ultrastructural localization of P2X3 receptors in rat sensory neurons. Neuroreport 9:2545–2550

    PubMed  CAS  Google Scholar 

  • Loesch A, Burnstock G (1998) Electron-immunocytochemical localization of P2X1 receptors in the rat cerebellum. Cell Tissue Res 294:253–260

    PubMed  CAS  Google Scholar 

  • Londos C, Cooper DM, Wolff J (1980) Subclasses of external adenosine receptors. Proc Natl Acad Sci U S A 77:2551–2554

    PubMed  CAS  Google Scholar 

  • Lustig KD, Shiau AK, Brake AJ, Julius D (1993) Expression cloning of an ATP receptor from mouse neuroblastoma cells. Proc Natl Acad Sci U S A 90:5113–5117

    PubMed  CAS  Google Scholar 

  • Masino SA, Dunwiddie TV (2001) Role of purines and pyrimidines in the central nervous system. In: Abbracchio MP, Williams M (eds) Purinergic and pirimidinergic signalling. Springer, Berlin

    Google Scholar 

  • Matsuoka I, Ohkubo S (2004) ATP- and adenosine-mediated signaling in the central nervous system: adenosine receptor activation by ATP through rapid and localized generation of adenosine by ecto-nucleotidases. J Pharmacol Sci 94:95–99

    PubMed  CAS  Google Scholar 

  • Mishra SK, Braun N, Shukla V, Fullgrabe M, Schomerus C, Korf HW, Gachet C, Ikehara Y, Sevigny J, Robson SC, Zimmermann H (2006) Extracellular nucleotide signaling in adult neural stem cells: synergism with growth factor-mediated cellular proliferation. Development 133:675–684

    PubMed  CAS  Google Scholar 

  • Montana V, Malarkey EB, Verderio C, Matteoli M, Parpura V (2006) Vesicular transmitter release from astrocytes. Glia 54:700–715

    PubMed  Google Scholar 

  • Mooradian AD, Grabau G, Bastani B (1994) Adenosine triphosphatases of rat cerebral microvessels. Effect of age and diabetes mellitus. Life Sci 55:1261–1265

    PubMed  CAS  Google Scholar 

  • Moore D, Chambers J, Waldvogel H, Faull R, Emson P (2000) Regional and cellular distribution of the P2Y(1) purinergic receptor in the human brain: striking neuronal localisation. J Comp Neurol 421:374–384

    PubMed  CAS  Google Scholar 

  • Moran-Jimenez MJ, Matute C (2000) Immunohistochemical localization of the P2Y(1) purinergic receptor in neurons and glial cells of the central nervous system. Brain Res Mol Brain Res 78:50–58

    PubMed  CAS  Google Scholar 

  • Mori M, Heuss C, Gahwiler BH, Gerber U (2001) Fast synaptic transmission mediated by P2X receptors in CA3 pyramidal cells of rat hippocampal slice cultures. J Physiol 535:115–123

    PubMed  CAS  Google Scholar 

  • Nagel J, Schladebach H, Koch M, Schwienbacher I, Muller CE, Hauber W (2003) Effects of an adenosine A2A receptor blockade in the nucleus accumbens on locomotion, feeding, and prepulse inhibition in rats. Synapse 49:279–286

    PubMed  CAS  Google Scholar 

  • Neary JT, Whittemore SR, Zhu Q, Norenberg MD (1994) Synergistic activation of DNA synthesis in astrocytes by fibroblast growth factors and extracellular ATP. J Neurochem 63:490–494

    PubMed  CAS  Google Scholar 

  • Neary JT, Rathbone MP, Cattabeni F, Abbracchio MP, Burnstock G (1996) Trophic actions of extracellular nucleotides and nucleosides on glial and neuronal cells. Trends Neurosci 19:13–18

    PubMed  CAS  Google Scholar 

  • Nieber K, Poelchen W, Illes P (1997) Role of ATP in fast excitatory synaptic potentials in locus coeruleus neurones of the rat. Br J Pharmacol 122:423–430

    PubMed  CAS  Google Scholar 

  • Nishizaki T (2004) ATP- and adenosine-mediated signaling in the central nervous system: adenosine stimulates glutamate release from astrocytes via A2a adenosine receptors. J Pharmacol Sci 94:100–102

    PubMed  CAS  Google Scholar 

  • North RA, Verkhratsky A (2006) Purinergic transmission in the central nervous system. Pflugers Arch 452:479–485

    PubMed  CAS  Google Scholar 

  • O’Connor SE, Dainty IA, Leff P (1991) Further subclassification of ATP receptors based on agonist studies. Trends Pharmacol Sci 12:137–141

    PubMed  Google Scholar 

  • Paemeleire K, Leybaert L (2000) ATP-dependent astrocyte-endothelial calcium signaling following mechanical damage to a single astrocyte in astrocyte-endothelial co-cultures. J Neurotrauma 17:345–358

    PubMed  CAS  Google Scholar 

  • Pankratov Y, Lalo U, Castro E, Miras-Portugal MT, Krishtal O (1999) ATP receptor-mediated component of the excitatory synaptic transmission in the hippocampus. Prog Brain Res 120:237–249

    PubMed  CAS  Google Scholar 

  • Pankratov Y, Lalo U, Krishtal O, Verkhratsky A (2002) Ionotropic P2X purinoreceptors mediate synaptic transmission in rat pyramidal neurones of layer II/III of somato-sensory cortex. J Physiol 542:529–536

    PubMed  CAS  Google Scholar 

  • Pankratov Y, Lalo U, Verkhratsky A, North RA (2006) Vesicular release of ATP at central synapses. Pflugers Arch 452:589–597

    PubMed  CAS  Google Scholar 

  • Pankratov Y, Lalo U, Verkhratsky A, North RA (2007) Quantal release of ATP in mouse cortex. J Gen Physiol 129:257–265

    PubMed  CAS  Google Scholar 

  • Perez MT, Bruun A (1987) Colocalization of (3H)-adenosine accumulation and GABA immunoreactivity in the chicken and rabbit retinas. Histochemistry 87:413–417

    PubMed  CAS  Google Scholar 

  • Phillis JW, Wu PH (1981) The role of adenosine and its nucleotides in central synaptic transmission. Prog Neurobiol 16:187–239

    PubMed  CAS  Google Scholar 

  • Poelchen W, Sieler D, Wirkner K, Illes P (2001) Co-transmitter function of ATP in central catecholaminergic neurons of the rat. Neuroscience 102:593–602

    PubMed  CAS  Google Scholar 

  • Popoli P, Pezzola A, de Carolis AS (1994) Modulation of striatal adenosine A1 and A2 receptors induces rotational behaviour in response to dopaminergic stimulation in intact rats. Eur J Pharmacol 257:21–25

    PubMed  CAS  Google Scholar 

  • Potter P, White TD (1980) Release of adenosine 5′-triphosphate from synaptosomes from different regions of rat brain. Neuroscience 5:1351–1356

    PubMed  CAS  Google Scholar 

  • Rathbone MP, Middlemiss PJ, Gysbers JW, Andrew C, Herman MA, Reed JK, Ciccarelli R, Di Iorio P, Caciagli F (1999) Trophic effects of purines in neurons and glial cells. Prog Neurobiol 59:663–690

    PubMed  CAS  Google Scholar 

  • Renner C, Asperger A, Seyffarth A, Meixensberger J, Gebhardt R, Gaunitz F (2010) Carnosine inhibits ATP production in cells from malignant glioma. Neurol Res 32:101–105

    PubMed  CAS  Google Scholar 

  • Richardson PJ, Brown SJ (1987) ATP release from affinity-purified rat cholinergic nerve terminals. J Neurochem 48:622–630

    PubMed  CAS  Google Scholar 

  • Robertson SJ, Ennion SJ, Evans RJ, Edwards FA (2001) Synaptic P2X receptors. Curr Opin Neurobiol 11:378–386

    PubMed  CAS  Google Scholar 

  • Rubio ME, Soto F (2001) Distinct localization of P2X receptors at excitatory postsynaptic specializations. J Neurosci 21:641–653

    PubMed  CAS  Google Scholar 

  • Scammell TE, Gerashchenko DY, Mochizuki T, McCarthy MT, Estabrooke IV, Sears CA, Saper CB, Urade Y, Hayaishi O (2001) An adenosine A2a agonist increases sleep and induces Fos in ventrolateral preoptic neurons. Neuroscience 107:653–663

    PubMed  CAS  Google Scholar 

  • Scemes E, Suadicani SO, Dahl G, Spray DC (2007) Connexin and pannexin mediated cell-cell communication. Neuron Glia Biol 3:199–208

    PubMed  Google Scholar 

  • Sinclair CJ, LaRiviere CG, Young JD, Cass CE, Baldwin SA, Parkinson FE (2000) Purine uptake and release in rat C6 glioma cells: nucleoside transport and purine metabolism under ATP-depleting conditions. J Neurochem 75:1528–1538

    PubMed  CAS  Google Scholar 

  • Snyder SH (1985) Adenosine as a neuromodulator. Annu Rev Neurosci 8:103–124

    PubMed  CAS  Google Scholar 

  • Snyder SH, Katims JJ, Annau Z, Bruns RF, Daly JW (1981) Adenosine receptors and behavioral actions of methylxanthines. Proc Natl Acad Sci U S A 78:3260–3264

    PubMed  CAS  Google Scholar 

  • Sperlagh B, Sershen H, Lajtha A, Vizi ES (1998) Co-release of endogenous ATP and [3H]noradrenaline from rat hypothalamic slices: origin and modulation by alpha2-adrenoceptors. Neuroscience 82:511–520

    PubMed  CAS  Google Scholar 

  • Stout CE, Costantin JL, Naus CC, Charles AC (2002) Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels. J Biol Chem 277:10482–10488

    PubMed  CAS  Google Scholar 

  • Suplat-Wypych D, Dygas A, Baranska J (2010) 2′, 3′-O-(4-benzoylbenzoyl)-ATP-mediated calcium signaling in rat glioma C6 cells: role of the P2Y(2) nucleotide receptor. Purinergic Signal 6:317–325

    PubMed  CAS  Google Scholar 

  • Synowitz M, Glass R, Farber K, Markovic D, Kronenberg G, Herrmann K, Schnermann J, Nolte C, van Rooijen N, Kiwit J, Kettenmann H (2006) A1 adenosine receptors in microglia control glioblastoma-host interaction. Cancer Res 66:8550–8557

    PubMed  CAS  Google Scholar 

  • Tamajusuku AS, Villodre ES, Paulus R, Coutinho-Silva R, Battasstini AM, Wink MR, Lenz G (2010) Characterization of ATP-induced cell death in the GL261 mouse glioma. J Cell Biochem 109:983–991

    PubMed  CAS  Google Scholar 

  • Valera S, Hussy N, Evans RJ, Adami N, North RA, Surprenant A, Buell G (1994) A new class of ligand-gated ion channel defined by P2x receptor for extracellular ATP. Nature 371:516–519

    PubMed  CAS  Google Scholar 

  • van Calker D, Muller M, Hamprecht B (1979) Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J Neurochem 33:999–1005

    PubMed  Google Scholar 

  • Viscomi MT, Florenzano F, Conversi D, Bernardi G, Molinari M (2004) Axotomy dependent purinergic and nitrergic co-expression. Neuroscience 123:393–404

    PubMed  CAS  Google Scholar 

  • Wall MJ, Dale N (2007) Auto-inhibition of rat parallel fibre-Purkinje cell synapses by activity-dependent adenosine release. J Physiol 581:553–565

    PubMed  Google Scholar 

  • Webb TE, Simon J, Krishek BJ, Bateson AN, Smart TG, King BF, Burnstock G, Barnard EA (1993) Cloning and functional expression of a brain G-protein-coupled ATP receptor. FEBS Lett 324:219–225

    PubMed  CAS  Google Scholar 

  • Wei W, Ryu JK, Choi HB, McLarnon JG (2008) Expression and function of the P2X(7) receptor in rat C6 glioma cells. Cancer Lett 260:79–87

    PubMed  CAS  Google Scholar 

  • White TD (1977) Direct detection of depolarisation-induced release of ATP from a synaptosomal preparation. Nature 267:67–68

    PubMed  CAS  Google Scholar 

  • Wieraszko A, Ehrlich YH (1994) On the role of extracellular ATP in the induction of long-term potentiation in the hippocampus. J Neurochem 63:1731–1738

    PubMed  CAS  Google Scholar 

  • Williams M (1984) Mammalian central adenosine receptors. In: Lajtha A (ed) Handbook of neurochemistry. Plenum Publishing Corporation, New York

    Google Scholar 

  • Williams M (1987) Purinergic receptors and central nervous system function. In: Meltzer HY (ed) Psychopharmacology: the third generation of progress. Raven Press, New York

    Google Scholar 

  • Wink MR, Braganhol E, Tamajusuku AS, Lenz G, Zerbini LF, Libermann TA, Sevigny J, Battastini AM, Robson SC (2006) Nucleoside triphosphate diphosphohydrolase-2 (NTPDase2/CD39L1) is the dominant ectonucleotidase expressed by rat astrocytes. Neuroscience 138:421–432

    PubMed  CAS  Google Scholar 

  • Wittendorp MC, Boddeke HW, Biber K (2004) Adenosine A3 receptor-induced CCL2 synthesis in cultured mouse astrocytes. Glia 46:410–418

    PubMed  Google Scholar 

  • Zhang Z, Chen G, Zhou W, Song A, Xu T, Luo Q, Wang W, Gu XS, Duan S (2007) Regulated ATP release from astrocytes through lysosome exocytosis. Nat Cell Biol 9:945–953

    PubMed  CAS  Google Scholar 

  • Zimmermann H (2006) Nucleotide signaling in nervous system development. Pflugers Arch 452:573–588

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey Burnstock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Burnstock, G. (2013). Introduction to Purinergic Signalling in the Brain. In: Barańska, J. (eds) Glioma Signaling. Advances in Experimental Medicine and Biology, vol 986. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4719-7_1

Download citation

Publish with us

Policies and ethics