iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-90-481-9112-3_102
An Estimation of Distribution Algorithms Applied to Sequence Pattern Mining | SpringerLink
Skip to main content

An Estimation of Distribution Algorithms Applied to Sequence Pattern Mining

  • Conference paper
  • First Online:
Innovations in Computing Sciences and Software Engineering

Abstract

This paper presents a proposal of distribution’s estimated algorithm to the extraction of sequential patterns in a database which use a probabilistic model based on graphs which represent the relations among items that form a sequence. The model maps a probability among the items allowing them to adjust the model during the execution of the algorithm using the evolution process of EDA, optimizing the candidate’s generation of solution and extracting a group of sequential patterns optimized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R. e Srikant, R. “Mining Sequential Patterns”. In Proc. of 1995 International Conference Data Engineering, Taipei, Taiwan, March, (1995).

    Google Scholar 

  2. Agrawal, R. e Srikant, R. Fast. “Algorithms for Mining Association Rules”, In: Proc. 20th International Conference Very Large Data Bases, VLDB, (1994).

    Google Scholar 

  3. Baluja, S. e Caruana, R. “Removing the Genetics from Standard Genetic Algorithm”. In Proceedings of the International Conference on Machine Learning. Morgan Kaufmann. p. 38-46, (1995).

    Google Scholar 

  4. Fogel, D. “Evolutionary Computation: Toward a new Philosophy of Machine Intelligence”. 2ª Ed., IEEE Press, 312p, (2000).

    Google Scholar 

  5. Han, J.; Kamber, M. “Mining Sequence Patterns in Trasactional Databases. In: Data Mining: Concepts and Techniques”. 2. ed. San Francisco: Elsevier. p. 23-498, (2006).

    Google Scholar 

  6. Holland, J. “Adaptation in Natural and Artificial Systems. University of Michigan Press”, Ann Arbor, (1975).

    Google Scholar 

  7. Kantardzic, M. “Data Mining Concepts. In: Data Mining: Concepts, Models, Methods and Algorithms”. New York: IEEE Press, (2003).

    Google Scholar 

  8. Koza, J. R. “Genetic Programming: On the Programming of Computers by Natural Selection”. MIT Press, Cambridge, (1992).

    Google Scholar 

  9. Larose, D. L. “Introduction to Data Mining. In: Discovering Knowledge in Data”. New Jersey: Wiley, (2005).

    Google Scholar 

  10. Larrañaga, P. e Lozano, J. “Estimation of Distribution Algorithms: A new tool for Evolutionary Computation”, Kluwer Academic Publishers. 382p, (2002).

    Google Scholar 

  11. Muhlenbein, H. e PaaB, G. From recombination of genes to the estimation of distributions I . Binary parameters, Lecture Notes in Computer Science 1141: Parallel Problem Solving from Nature - PPSN IV, pp.178-187, Springer, (1996).

    Google Scholar 

  12. Pei, J., Han, J., Pinto, H., Chen, Q. e Dayal, U. “PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth”. Int. Conf. on Data Engineering, (2001).

    Google Scholar 

  13. Sakura, S.; Kitahara, Y.; Orihara, R. “A Sequential Pattern Mining Method based on Sequential Interestingness”. International Journal Of Computational Intelligence, Paris, p. 252-260. (2008).

    Google Scholar 

  14. Santana, R., Larrañaga, P. e Lozano, J. “Interactions and Dependencies in Estimation of Distribution Algorithms”. IEEE Press, 1418-1425, (2005).

    Google Scholar 

  15. Spence, Robert. Information Visualization. Barcelona: Acm Press, 459 p., (2001).

    Google Scholar 

  16. Srikant, R. e Agrawal, R. (1996) “Mining Sequential Patterns: Generalizations and Performance Improvements”. Proc. 5th EDBT, 3-17.

    Google Scholar 

  17. Zaki, M., J. “Spade: An Efficient Algorithm for Mining Frequent Sequences”. Machine Learning 42, ½, 31-60, (2001).

    Google Scholar 

  18. Zhao, Q. e Bhowmick, S. “Sequential Pattern Mining: A Survey”. Technical Report, CAIS, Nanyang Technological University, Singapore, No. 2003118, (2003).

    Google Scholar 

  19. Zhigljavsky, A. Theory of Global Random Search. Kluwer Academic Publishers, (1991).

    Google Scholar 

  20. http://www.ics.uci.edu/˜mlearn/. Acessado em: 24/10/2009.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Igor A. Godinho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Godinho, P.I.A., Meiguins, A.S.G., de Oliveira, R.C.L., Meiguins, B.S. (2010). An Estimation of Distribution Algorithms Applied to Sequence Pattern Mining. In: Sobh, T., Elleithy, K. (eds) Innovations in Computing Sciences and Software Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9112-3_102

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9112-3_102

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9111-6

  • Online ISBN: 978-90-481-9112-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics