iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-81-322-2250-7_46
Modeling Indian General Elections: Sentiment Analysis of Political Twitter Data | SpringerLink
Skip to main content

Modeling Indian General Elections: Sentiment Analysis of Political Twitter Data

  • Conference paper
  • First Online:
Information Systems Design and Intelligent Applications

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 339))

Abstract

Twitter is a microblogging website where users read and write short messages on various topics every day. Political analysis using social media is getting attention of many researchers to understand the public opinion and trend especially during election time. In this paper, we propose a novel approach based on semantics and context aware rules to detect the public opinion and further predict election results. We crawled the political tweets during the general election in India, and further evaluate our proposed approach against the election results. Experimental results show the effectiveness of the proposed rules in determining the sentiment of the political tweets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Blenn, N., Charalampidou, K., Doerr, C.: Context-sensitive sentiment classification of short colloquial text. In: Proceedings of IFIP’12, pp. 97–108, Prague, Czech Republic (2012)

    Google Scholar 

  2. Mittal, N., Agarwal, B., Agarwal, S., Agarwal, S., Gupta, P.: A hybrid approach for twitter sentiment analysis. In: 10th International Conference on Natural Language Processing (ICON), pp. 116–120 (2013)

    Google Scholar 

  3. Agarwal, B., Mittal, N.: Prominent feature extraction for review analysis: an empirical study. J. Exp. Theor. Artif. Intell. (2014). doi:10.1080/0952813X.2014.977830

    Google Scholar 

  4. Subrahmanian, V.S., Reforgiato, D.: Ava: adjective-verb-adverb combinations for sentiment analysis. Intell. Syst. 23(4), 43–50 (2008)

    Google Scholar 

  5. Turney, P.: Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. In: Proceedings of 40th Meeting of the Association for Computational Linguistics, pp. 417–424, Philadelphia, PA (2002)

    Google Scholar 

  6. Taboada, M., Brooke, J., Tofiloski, M., Voll, K., Stede, M.: Lexicon-based methods for sentiment analysis. Comput. Linguis. 37(2), 267–307 (2011)

    Article  Google Scholar 

  7. Esuli, A., Sebastiani, F.: SentiWordNet: a publicly available lexical resource for opinion mining. In: Proceedings of 5th International Conference on Language Resources and Evaluation (LREC), pp. 417–422 (2006)

    Google Scholar 

  8. Romanyshyn, M.: Rule-based sentiment analysis of ukrainian reviews. Int. J. Artif. Intell. Appl. 4(4), 103–111 (2013)

    Google Scholar 

  9. Kessler, J.S., Nicolov, N.: Targeting sentiment expressions through supervised ranking of linguistic configurations. In: 3rd International AAAI Conference on Weblogs and Social Media (2009)

    Google Scholar 

  10. Bandyopadhyay, S., Mallick, K.: A new path based hybrid measure for gene ontology similarity. IEEE/ACM Trans. Comput. Biol. Bioinform. 11(1), 116–127 (2014). doi:10.1109/TCBB.2013.149

  11. Tumasjan, A., Sprenger, T.O., Sandner, P., Welpe, I.: Predicting elections with twitter: what 140 characters reveal about political sentiment. In: Proceedings of ICWSM (2010)

    Google Scholar 

  12. O’Connor, B., Balasubramanyan, R., Routledge, B.R., Smith, N.A.: From tweets to polls: linking text sentiment to public opinion time series. In: ICWSM (2010)

    Google Scholar 

  13. Bermingham, A., Smeaton, A.F.: On using twitter to monitor political sentiment and predict election results. In: Proceedings of the Workshop on Sentiment Analysis Where AI Meets Psychology (SAAIP 2011-IJCNLP), pp. 2–10, Chiang Mai, Thailand (2011)

    Google Scholar 

  14. Bakliwal, A., Foster, J., Puil, J.V.D., O’Brien, R., Tounsi, L., Hughes, M.: Sentiment analysis of political tweets: towards an accurate classifier. In: Proceedings of NAACL Workshop on Language Analysis in Social Media, pp. 49–58 (2011)

    Google Scholar 

  15. Riloff, E., Qadir, A., Surve, P., De Silva, L., Gilbert, N., Huang, R.: Sarcasm as contrast between a positive sentiment and negative situation. In: EMNLP 2013, pp. 704–714 (2013)

    Google Scholar 

  16. Di Caro, L., Grella, M.: Sentiment analysis via dependency parsing. Comput. Stan. Interfaces (2012)

    Google Scholar 

  17. Tan, L.K.W., Na, J.C., Theng, Y.L., Chang, K.: Phrase-level sentiment polarity classification using rule-based typed dependencies and additional complex phrases consideration. J. Comput. Sci. Technol. 27(3), 650–666 (2012)

    Article  Google Scholar 

  18. De Marneffe, M., MacCartney, B., Manning, C.: Generating typed dependency parse from phrase structure parses. LREC (2006)

    Google Scholar 

  19. Gimpel, K., Schneider, N., O’Connor, B., Das, D., Mills, D., Eisenstein, J., Heilman, M., Yogatama, D., Flanigan, J., Smith, N.A.: Part-of-speech tagging for twitter: annotation, features, and experiments. In: Proceedings of ACL (2011)

    Google Scholar 

  20. http://eci.nic.in/eci_main1/GE2014/PC_WISE_TURNOUT.htm

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kartik Singhal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this paper

Cite this paper

Singhal, K., Agrawal, B., Mittal, N. (2015). Modeling Indian General Elections: Sentiment Analysis of Political Twitter Data. In: Mandal, J., Satapathy, S., Kumar Sanyal, M., Sarkar, P., Mukhopadhyay, A. (eds) Information Systems Design and Intelligent Applications. Advances in Intelligent Systems and Computing, vol 339. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2250-7_46

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2250-7_46

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2249-1

  • Online ISBN: 978-81-322-2250-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics