Abstract
Secure comparison has been a fundamental challenge in privacy-preserving computation, since its inception as Yao’s millionaires’ problem (FOCS 1982). In this work, we present a novel construction for general n-party private comparison, secure against an active adversary, in the dishonest majority setting. For the case of comparisons over fields, our protocol is more efficient than the best prior work (\(\mathsf {edaBits} \): Crypto 2020), with \(\sim 1.5\times \) better throughput in most adversarial settings, over \(2.3\times \) better throughput in particular in the passive, honest majority setting, and lower communication. Our comparisons crucially eliminate the need for bounded inputs as well as the need for statistical security that prior works require. An important consequence of removing this “slack” (a gap between the bit-length of the input and the MPC representation) is that multi-party computation (MPC) protocols can be run in a field of smaller size, reducing the overhead incurred by privacy-preserving computations. We achieve this novel construction using the commutative nature of addition over rings and fields. This makes the protocol both simple to implement and highly efficient and we provide an implementation in MP-SPDZ (CCS 2020).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aly, A.: SCALE-MAMBA v1.2: Documentation (2018)
Bendlin, R., Damgård, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 169–188. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_11
Bogetoft, P., et al.: Secure multiparty computation goes live. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03549-4_20
Bogetoft, P., Damgård, I., Jakobsen, T., Nielsen, K., Pagter, J., Toft, T.: A practical implementation of secure auctions based on multiparty integer computation. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp. 142–147. Springer, Heidelberg (2006). https://doi.org/10.1007/11889663_10
Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_50
Catrina, O., de Hoogh, S.: Improved primitives for secure multiparty integer computation. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 182–199. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15317-4_13
Chen, H., Kim, M., Razenshteyn, I., Rotaru, D., Song, Y., Wagh, S.: Maliciously secure matrix multiplication with applications to private deep learning. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12493, pp. 31–59. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64840-4_2
Couteau, G.: New protocols for secure equality test and comparison. In: Preneel, B., Vercauteren, F. (eds.) ACNS 2018. LNCS, vol. 10892, pp. 303–320. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93387-0_16
Damgård, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure constant-rounds multi-party computation for equality, comparison, bits and exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_15
Damgård, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical covertly secure mpc for dishonest majority – or: breaking the SPDZ limits. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6_1
Damgård, I., Nielsen, J.B.: Universally composable efficient multiparty computation from threshold homomorphic encryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 247–264. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_15
Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_38
Data61. MP-SPDZ: Versatile Framework for Multi-party Computation (2019). https://github.com/data61/MP-SPDZ
Escudero, D., Ghosh, S., Keller, M., Rachuri, R., Scholl, P.: Improved Primitives for MPC over Mixed Arithmetic-Binary Circuits. Cryptology ePrint Archive, Report 2020/338 (2020). https://eprint.iacr.org/2020/338
Fan, J., Vercauteren, F.: Somewhat Practical Fully Homomorphic Encryption. Cryptology ePrint Archive, Report 2012/144 (2012). https://eprint.iacr.org/2012/144
Fujii, W., Iwamura, K., Inamura, M.: Secure comparison and interval test protocols based on three-party MPC. In: 6th International Conference on Information Systems Security and Privacy, ICISSP 2020, pp. 698–704. SciTePress (2020)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Juvekar, C., Vaikuntanathan, V., Chandrakasan, A.: GAZELLE: a low latency framework for secure neural network inference. In: 27th USENIX Security Symposium (USENIX Security 18), pp. 1651–1669 (2018)
Kuykendall, B., Krawczyk, H., Rabin, T.: Cryptography for# metoo. In: Privacy Enhancing Technologies Symposium (PETS) (2019)
Lipmaa, H., Toft, T.: Secure equality and greater-than tests with sublinear online complexity. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7966, pp. 645–656. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39212-2_56
Liu, J., Juuti, M., Lu, Y., Asokan, N.: Oblivious neural network predictions via MiniONN transformations. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 619–631 (2017)
Mohassel, P., Zhang, Y.: SecureML: a system for scalable privacy-preserving machine learning. In: IEEE Symposium on Security and Privacy (S&P) (2017)
Nishide, T., Ohta, K.: Multiparty computation for interval, equality, and comparison without bit-decomposition protocol. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 343–360. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71677-8_23
Rotaru, D., Smart, N.P., Tanguy, T., Vercauteren, F., Wood, T.: Actively Secure Setup for SPDZ. Cryptology ePrint Archive, Report 2019/1300 (2019). https://eprint.iacr.org/2019/1300
Rotaru, D., Wood, T.: MArBled circuits: mixing arithmetic and boolean circuits with active security. In: Hao, F., Ruj, S., Sen Gupta, S. (eds.) INDOCRYPT 2019. LNCS, vol. 11898, pp. 227–249. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35423-7_12
Sepior. https://sepior.com/ (2020)
Sharemind. https://sharemind.cyber.ee/ (2020)
Toft, T.: Solving linear programs using multiparty computation. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 90–107. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03549-4_6
Toft, T.: Sub-linear, secure comparison with two non-colluding parties. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 174–191. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19379-8_11
Unbound. https://www.unboundtech.com/ (2020)
Wagh, S.: New Directions in Efficient Privacy Preserving Machine Learning. PhD thesis, Princeton University (2020)
Wagh, S., Gupta, D., Chandran, N.: SecureNN: 3-party secure computation for neural network training. In: Privacy Enhancing Technologies Symposium (PETS) (2019)
Wagh, S., Tople, S., Benhamouda, F., Kushilevitz, E., Mittal, P., Rabin, T.: FALCON: honest-majority maliciously secure framework for private deep learning. In: Privacy Enhancing Technologies Symposium (PETS) (2021)
Yao, A.C.: Protocols for Secure Computations. In: 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982), pp. 160–164. IEEE (1982)
Yu, C.-H., Yang, B.-Y.: Probabilistically correct secure arithmetic computation for modular conversion, zero test, comparison, MOD and exponentiation. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 426–444. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32928-9_24
Acknowledgements
This work was supported in part by the Research Council KU Leuven grant C14/18/067, and by CyberSecurity Research Flanders with reference number VR20192203, and by ERC Advanced Grant ERC-2015-AdG-IMPaCT.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 International Financial Cryptography Association
About this paper
Cite this paper
Makri, E., Rotaru, D., Vercauteren, F., Wagh, S. (2021). \(\mathsf {Rabbit}\): Efficient Comparison for Secure Multi-Party Computation. In: Borisov, N., Diaz, C. (eds) Financial Cryptography and Data Security. FC 2021. Lecture Notes in Computer Science(), vol 12674. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-64322-8_12
Download citation
DOI: https://doi.org/10.1007/978-3-662-64322-8_12
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-64321-1
Online ISBN: 978-3-662-64322-8
eBook Packages: Computer ScienceComputer Science (R0)