iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-662-64322-8_12
$$\mathsf {Rabbit}$$ : Efficient Comparison for Secure Multi-Party Computation | SpringerLink
Skip to main content

\(\mathsf {Rabbit}\): Efficient Comparison for Secure Multi-Party Computation

  • Conference paper
  • First Online:
Financial Cryptography and Data Security (FC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12674))

Included in the following conference series:

Abstract

Secure comparison has been a fundamental challenge in privacy-preserving computation, since its inception as Yao’s millionaires’ problem (FOCS 1982). In this work, we present a novel construction for general n-party private comparison, secure against an active adversary, in the dishonest majority setting. For the case of comparisons over fields, our protocol is more efficient than the best prior work (\(\mathsf {edaBits} \): Crypto 2020), with \(\sim 1.5\times \) better throughput in most adversarial settings, over \(2.3\times \) better throughput in particular in the passive, honest majority setting, and lower communication. Our comparisons crucially eliminate the need for bounded inputs as well as the need for statistical security that prior works require. An important consequence of removing this “slack” (a gap between the bit-length of the input and the MPC representation) is that multi-party computation (MPC) protocols can be run in a field of smaller size, reducing the overhead incurred by privacy-preserving computations. We achieve this novel construction using the commutative nature of addition over rings and fields. This makes the protocol both simple to implement and highly efficient and we provide an implementation in MP-SPDZ (CCS 2020).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The name is an extension of the daBit [25], maBit [24] and \(\mathsf {edaBit} \) [14] line of work.

References

  1. Aly, A.: SCALE-MAMBA v1.2: Documentation (2018)

    Google Scholar 

  2. Bendlin, R., Damgård, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 169–188. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_11

    Chapter  Google Scholar 

  3. Bogetoft, P., et al.: Secure multiparty computation goes live. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03549-4_20

    Chapter  Google Scholar 

  4. Bogetoft, P., Damgård, I., Jakobsen, T., Nielsen, K., Pagter, J., Toft, T.: A practical implementation of secure auctions based on multiparty integer computation. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp. 142–147. Springer, Heidelberg (2006). https://doi.org/10.1007/11889663_10

    Chapter  Google Scholar 

  5. Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_50

    Chapter  Google Scholar 

  6. Catrina, O., de Hoogh, S.: Improved primitives for secure multiparty integer computation. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 182–199. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15317-4_13

    Chapter  MATH  Google Scholar 

  7. Chen, H., Kim, M., Razenshteyn, I., Rotaru, D., Song, Y., Wagh, S.: Maliciously secure matrix multiplication with applications to private deep learning. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12493, pp. 31–59. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64840-4_2

    Chapter  Google Scholar 

  8. Couteau, G.: New protocols for secure equality test and comparison. In: Preneel, B., Vercauteren, F. (eds.) ACNS 2018. LNCS, vol. 10892, pp. 303–320. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93387-0_16

    Chapter  MATH  Google Scholar 

  9. Damgård, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure constant-rounds multi-party computation for equality, comparison, bits and exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_15

    Chapter  Google Scholar 

  10. Damgård, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical covertly secure mpc for dishonest majority – or: breaking the SPDZ limits. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6_1

    Chapter  Google Scholar 

  11. Damgård, I., Nielsen, J.B.: Universally composable efficient multiparty computation from threshold homomorphic encryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 247–264. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_15

    Chapter  Google Scholar 

  12. Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_38

    Chapter  Google Scholar 

  13. Data61. MP-SPDZ: Versatile Framework for Multi-party Computation (2019). https://github.com/data61/MP-SPDZ

  14. Escudero, D., Ghosh, S., Keller, M., Rachuri, R., Scholl, P.: Improved Primitives for MPC over Mixed Arithmetic-Binary Circuits. Cryptology ePrint Archive, Report 2020/338 (2020). https://eprint.iacr.org/2020/338

  15. Fan, J., Vercauteren, F.: Somewhat Practical Fully Homomorphic Encryption. Cryptology ePrint Archive, Report 2012/144 (2012). https://eprint.iacr.org/2012/144

  16. Fujii, W., Iwamura, K., Inamura, M.: Secure comparison and interval test protocols based on three-party MPC. In: 6th International Conference on Information Systems Security and Privacy, ICISSP 2020, pp. 698–704. SciTePress (2020)

    Google Scholar 

  17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  18. Juvekar, C., Vaikuntanathan, V., Chandrakasan, A.: GAZELLE: a low latency framework for secure neural network inference. In: 27th USENIX Security Symposium (USENIX Security 18), pp. 1651–1669 (2018)

    Google Scholar 

  19. Kuykendall, B., Krawczyk, H., Rabin, T.: Cryptography for# metoo. In: Privacy Enhancing Technologies Symposium (PETS) (2019)

    Google Scholar 

  20. Lipmaa, H., Toft, T.: Secure equality and greater-than tests with sublinear online complexity. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7966, pp. 645–656. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39212-2_56

    Chapter  MATH  Google Scholar 

  21. Liu, J., Juuti, M., Lu, Y., Asokan, N.: Oblivious neural network predictions via MiniONN transformations. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 619–631 (2017)

    Google Scholar 

  22. Mohassel, P., Zhang, Y.: SecureML: a system for scalable privacy-preserving machine learning. In: IEEE Symposium on Security and Privacy (S&P) (2017)

    Google Scholar 

  23. Nishide, T., Ohta, K.: Multiparty computation for interval, equality, and comparison without bit-decomposition protocol. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 343–360. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71677-8_23

    Chapter  Google Scholar 

  24. Rotaru, D., Smart, N.P., Tanguy, T., Vercauteren, F., Wood, T.: Actively Secure Setup for SPDZ. Cryptology ePrint Archive, Report 2019/1300 (2019). https://eprint.iacr.org/2019/1300

  25. Rotaru, D., Wood, T.: MArBled circuits: mixing arithmetic and boolean circuits with active security. In: Hao, F., Ruj, S., Sen Gupta, S. (eds.) INDOCRYPT 2019. LNCS, vol. 11898, pp. 227–249. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35423-7_12

    Chapter  Google Scholar 

  26. Sepior. https://sepior.com/ (2020)

  27. Sharemind. https://sharemind.cyber.ee/ (2020)

  28. Toft, T.: Solving linear programs using multiparty computation. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 90–107. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03549-4_6

    Chapter  Google Scholar 

  29. Toft, T.: Sub-linear, secure comparison with two non-colluding parties. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 174–191. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19379-8_11

    Chapter  Google Scholar 

  30. Unbound. https://www.unboundtech.com/ (2020)

  31. Wagh, S.: New Directions in Efficient Privacy Preserving Machine Learning. PhD thesis, Princeton University (2020)

    Google Scholar 

  32. Wagh, S., Gupta, D., Chandran, N.: SecureNN: 3-party secure computation for neural network training. In: Privacy Enhancing Technologies Symposium (PETS) (2019)

    Google Scholar 

  33. Wagh, S., Tople, S., Benhamouda, F., Kushilevitz, E., Mittal, P., Rabin, T.: FALCON: honest-majority maliciously secure framework for private deep learning. In: Privacy Enhancing Technologies Symposium (PETS) (2021)

    Google Scholar 

  34. Yao, A.C.: Protocols for Secure Computations. In: 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982), pp. 160–164. IEEE (1982)

    Google Scholar 

  35. Yu, C.-H., Yang, B.-Y.: Probabilistically correct secure arithmetic computation for modular conversion, zero test, comparison, MOD and exponentiation. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 426–444. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32928-9_24

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Research Council KU Leuven grant C14/18/067, and by CyberSecurity Research Flanders with reference number VR20192203, and by ERC Advanced Grant ERC-2015-AdG-IMPaCT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleftheria Makri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 International Financial Cryptography Association

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Makri, E., Rotaru, D., Vercauteren, F., Wagh, S. (2021). \(\mathsf {Rabbit}\): Efficient Comparison for Secure Multi-Party Computation. In: Borisov, N., Diaz, C. (eds) Financial Cryptography and Data Security. FC 2021. Lecture Notes in Computer Science(), vol 12674. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-64322-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-64322-8_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-64321-1

  • Online ISBN: 978-3-662-64322-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics