iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-662-49192-8_16
Online Minimum Spanning Tree with Advice | SpringerLink
Skip to main content

Online Minimum Spanning Tree with Advice

(Extended Abstract)

  • Conference paper
  • First Online:
SOFSEM 2016: Theory and Practice of Computer Science (SOFSEM 2016)

Abstract

In the online minimum spanning tree problem, a graph is revealed vertex by vertex; together with every vertex, all edges to vertices that are already known are given, and an online algorithm must irrevocably choose a subset of them as a part of its solution. The advice complexity of an online problem is a means to quantify the information that needs to be extracted from the input to achieve good results. For a graph of size n, we show an asymptotically tight bound of \(\varTheta (n\log n)\) on the number of advice bits to produce an optimal solution for any given graph. For particular graph classes, e.g., with bounded degree or a restricted edge weight function, we prove that the upper bound can be drastically reduced; e.g., \(5(n-1)\) advice bits allow to compute an optimal result if the weight function is the Euclidean distance; if the graph is complete, even a logarithmic number suffices. Some of these results make use of the optimality of Kruskal’s algorithm for the offline setting. We also study the trade-off between the number of advice bits and the achievable competitive ratio. To this end, we perform a reduction from another online problem to obtain a linear lower bound on the advice complexity for any near-optimal solution. Using our results from the advice complexity finally allows us to give a lower bound on the expected competitive ratio of any randomized online algorithm for the problem.

This work was partially supported by SNF grant 200021–146372 and by MIUR under the project “PRIN: Automi e Linguaggi Formali: Aspetti Matematici e Applicativi.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barhum, K., Böckenhauer, H.-J., Forišek, M., Gebauer, H., Hromkovič, J., Krug, S., Smula, J., Steffen, B.: On the power of advice and randomization for the disjoint path allocation problem. In: Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M. (eds.) SOFSEM 2014. LNCS, vol. 8327, pp. 89–101. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  2. Barhum, K.: Tight bounds for the advice complexity of the online minimum steiner tree problem. In: Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M. (eds.) SOFSEM 2014. LNCS, vol. 8327, pp. 77–88. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  3. Bianchi, M.P., Böckenhauer, H.-J., Hromkovič, J., Keller, L.: Online coloring of bipartite graphs with and without advice. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.) COCOON 2012. LNCS, vol. 7434, pp. 519–530. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Bianchi, M.P., Böckenhauer, H.-J., Hromkovič, J., Krug, S., Steffen, B.: On the advice complexity of the online L(2,1)-coloring problem on paths and cycles. In: Du, D.-Z., Zhang, G. (eds.) COCOON 2013. LNCS, vol. 7936, pp. 53–64. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  5. Böckenhauer, H.-J., Hromkovič, J., Komm, D., Krug, S., Smula, J., Sprock, A.: The string guessing problem as a method to prove lower bounds on the advice complexity. Theoret. Comput. Sci. 554, 95–108 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  6. Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R., Mömke, T.: On the advice complexity of online problems. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 331–340. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R.: On the advice complexity of the \(k\)-server problem. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 207–218. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press, New York (1998)

    MATH  Google Scholar 

  9. Boyar, J., Favrholdt, L.M., Kudahl, C., Mikkelsen, J.W.: The advice complexity of a class of hard online problems. CoRR abs/1408.7033 (2014)

  10. Dobrev, S., Královič, R., Královič, R.: Independent set with advice: the impact of graph knowledge. In: Erlebach, T., Persiano, G. (eds.) WAOA 2012. LNCS, vol. 7846, pp. 2–15. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Dobrev, S., Královič, R., Markou, E.: Online graph exploration with advice. In: Even, G., Halldórsson, M.M. (eds.) SIROCCO 2012. LNCS, vol. 7355, pp. 267–278. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  12. Dobrev, S., Královic, R., Pardubská, D.: Measuring the problem-relevant information in input. RAIRO ITA 43(3), 585–613 (2009)

    MATH  Google Scholar 

  13. Elias, P.: Universal codeword sets and representations of the integers. IEEE Trans. Inf. Theory 21(2), 194–203 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  14. Emek, Y., Fraigniaud, P., Korman, A., Rosén, A.: Online computation with advice. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 427–438. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Forišek, M., Keller, L., Steinová, M.: Advice complexity of online coloring for paths. In: Dediu, A.-H., Martín-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 228–239. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  16. Hromkovič, J., Královič, R., Královič, R.: Information complexity of online problems. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 24–36. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Kasperski, A.: Discrete Optimization with Interval Data: Minmax Regret and Fuzzy Approach. Springer, Heidelberg (2008)

    Google Scholar 

  18. Komm, D., Královič, R.: Advice complexity and barely random algorithms. Theor. Inf. Appl. (RAIRO) 45(2), 249–267 (2011). IEEE Computer Society

    Article  MATH  Google Scholar 

  19. Kruskal Jr., J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soc. 7(1), 48–50 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  20. Megow, N., Skutella, M., Verschae, J., Wiese, A.: The power of recourse for online MST and TSP. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 689–700. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  21. Remy, J., Souza, A., Steger, A.: On an online spanning tree problem in randomly weighted graphs. Comb. Probab. Comput. 16(1), 127–144 (2007). Cambridge University Press

    Article  MATH  MathSciNet  Google Scholar 

  22. Seibert, S., Sprock, A., Unger, W.: Advice complexity of the online coloring problem. In: Spirakis, P.G., Serna, M. (eds.) CIAC 2013. LNCS, vol. 7878, pp. 345–357. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  23. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Commun. ACM 28(2), 202–208 (1985)

    Article  MathSciNet  Google Scholar 

  24. Teh Tsai, Y., Yi Tang, C.: The competitiveness of randomized algorithms for on-line Steiner tree and on-line spanning tree problems. Inf. Process. Lett. 48(4), 177–182 (1993). Elsevier

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Juraj Hromkovič for enlightening discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Paola Bianchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bianchi, M.P., Böckenhauer, HJ., Brülisauer, T., Komm, D., Palano, B. (2016). Online Minimum Spanning Tree with Advice. In: Freivalds, R., Engels, G., Catania, B. (eds) SOFSEM 2016: Theory and Practice of Computer Science. SOFSEM 2016. Lecture Notes in Computer Science(), vol 9587. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49192-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49192-8_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49191-1

  • Online ISBN: 978-3-662-49192-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics