Abstract
In the online minimum spanning tree problem, a graph is revealed vertex by vertex; together with every vertex, all edges to vertices that are already known are given, and an online algorithm must irrevocably choose a subset of them as a part of its solution. The advice complexity of an online problem is a means to quantify the information that needs to be extracted from the input to achieve good results. For a graph of size n, we show an asymptotically tight bound of \(\varTheta (n\log n)\) on the number of advice bits to produce an optimal solution for any given graph. For particular graph classes, e.g., with bounded degree or a restricted edge weight function, we prove that the upper bound can be drastically reduced; e.g., \(5(n-1)\) advice bits allow to compute an optimal result if the weight function is the Euclidean distance; if the graph is complete, even a logarithmic number suffices. Some of these results make use of the optimality of Kruskal’s algorithm for the offline setting. We also study the trade-off between the number of advice bits and the achievable competitive ratio. To this end, we perform a reduction from another online problem to obtain a linear lower bound on the advice complexity for any near-optimal solution. Using our results from the advice complexity finally allows us to give a lower bound on the expected competitive ratio of any randomized online algorithm for the problem.
This work was partially supported by SNF grant 200021–146372 and by MIUR under the project “PRIN: Automi e Linguaggi Formali: Aspetti Matematici e Applicativi.”
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Barhum, K., Böckenhauer, H.-J., Forišek, M., Gebauer, H., Hromkovič, J., Krug, S., Smula, J., Steffen, B.: On the power of advice and randomization for the disjoint path allocation problem. In: Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M. (eds.) SOFSEM 2014. LNCS, vol. 8327, pp. 89–101. Springer, Heidelberg (2014)
Barhum, K.: Tight bounds for the advice complexity of the online minimum steiner tree problem. In: Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M. (eds.) SOFSEM 2014. LNCS, vol. 8327, pp. 77–88. Springer, Heidelberg (2014)
Bianchi, M.P., Böckenhauer, H.-J., Hromkovič, J., Keller, L.: Online coloring of bipartite graphs with and without advice. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.) COCOON 2012. LNCS, vol. 7434, pp. 519–530. Springer, Heidelberg (2012)
Bianchi, M.P., Böckenhauer, H.-J., Hromkovič, J., Krug, S., Steffen, B.: On the advice complexity of the online L(2,1)-coloring problem on paths and cycles. In: Du, D.-Z., Zhang, G. (eds.) COCOON 2013. LNCS, vol. 7936, pp. 53–64. Springer, Heidelberg (2013)
Böckenhauer, H.-J., Hromkovič, J., Komm, D., Krug, S., Smula, J., Sprock, A.: The string guessing problem as a method to prove lower bounds on the advice complexity. Theoret. Comput. Sci. 554, 95–108 (2014)
Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R., Mömke, T.: On the advice complexity of online problems. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 331–340. Springer, Heidelberg (2009)
Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R.: On the advice complexity of the \(k\)-server problem. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 207–218. Springer, Heidelberg (2011)
Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press, New York (1998)
Boyar, J., Favrholdt, L.M., Kudahl, C., Mikkelsen, J.W.: The advice complexity of a class of hard online problems. CoRR abs/1408.7033 (2014)
Dobrev, S., Královič, R., Královič, R.: Independent set with advice: the impact of graph knowledge. In: Erlebach, T., Persiano, G. (eds.) WAOA 2012. LNCS, vol. 7846, pp. 2–15. Springer, Heidelberg (2013)
Dobrev, S., Královič, R., Markou, E.: Online graph exploration with advice. In: Even, G., Halldórsson, M.M. (eds.) SIROCCO 2012. LNCS, vol. 7355, pp. 267–278. Springer, Heidelberg (2012)
Dobrev, S., Královic, R., Pardubská, D.: Measuring the problem-relevant information in input. RAIRO ITA 43(3), 585–613 (2009)
Elias, P.: Universal codeword sets and representations of the integers. IEEE Trans. Inf. Theory 21(2), 194–203 (1975)
Emek, Y., Fraigniaud, P., Korman, A., Rosén, A.: Online computation with advice. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 427–438. Springer, Heidelberg (2009)
Forišek, M., Keller, L., Steinová, M.: Advice complexity of online coloring for paths. In: Dediu, A.-H., Martín-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 228–239. Springer, Heidelberg (2012)
Hromkovič, J., Královič, R., Královič, R.: Information complexity of online problems. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 24–36. Springer, Heidelberg (2010)
Kasperski, A.: Discrete Optimization with Interval Data: Minmax Regret and Fuzzy Approach. Springer, Heidelberg (2008)
Komm, D., Královič, R.: Advice complexity and barely random algorithms. Theor. Inf. Appl. (RAIRO) 45(2), 249–267 (2011). IEEE Computer Society
Kruskal Jr., J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soc. 7(1), 48–50 (1956)
Megow, N., Skutella, M., Verschae, J., Wiese, A.: The power of recourse for online MST and TSP. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 689–700. Springer, Heidelberg (2012)
Remy, J., Souza, A., Steger, A.: On an online spanning tree problem in randomly weighted graphs. Comb. Probab. Comput. 16(1), 127–144 (2007). Cambridge University Press
Seibert, S., Sprock, A., Unger, W.: Advice complexity of the online coloring problem. In: Spirakis, P.G., Serna, M. (eds.) CIAC 2013. LNCS, vol. 7878, pp. 345–357. Springer, Heidelberg (2013)
Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Commun. ACM 28(2), 202–208 (1985)
Teh Tsai, Y., Yi Tang, C.: The competitiveness of randomized algorithms for on-line Steiner tree and on-line spanning tree problems. Inf. Process. Lett. 48(4), 177–182 (1993). Elsevier
Acknowledgments
The authors would like to thank Juraj Hromkovič for enlightening discussions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bianchi, M.P., Böckenhauer, HJ., Brülisauer, T., Komm, D., Palano, B. (2016). Online Minimum Spanning Tree with Advice. In: Freivalds, R., Engels, G., Catania, B. (eds) SOFSEM 2016: Theory and Practice of Computer Science. SOFSEM 2016. Lecture Notes in Computer Science(), vol 9587. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49192-8_16
Download citation
DOI: https://doi.org/10.1007/978-3-662-49192-8_16
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-49191-1
Online ISBN: 978-3-662-49192-8
eBook Packages: Computer ScienceComputer Science (R0)