iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-662-49122-5_18
Parameter Synthesis for Parametric Interval Markov Chains | SpringerLink
Skip to main content

Parameter Synthesis for Parametric Interval Markov Chains

  • Conference paper
  • First Online:
Verification, Model Checking, and Abstract Interpretation (VMCAI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9583))

Abstract

Interval Markov Chains (IMCs) are the base of a classic probabilistic specification theory introduced by Larsen and Jonsson in 1991. They are also a popular abstraction for probabilistic systems. In this paper we study parameter synthesis for a parametric extension of Interval Markov Chains in which the endpoints of intervals may be replaced with parameters. In particular, we propose constructions for the synthesis of all parameter values ensuring several properties such as consistency and consistent reachability in both the existential and universal settings with respect to implementations. We also discuss how our constructions can be modified in order to synthesise all parameter values ensuring other typical properties.

This work has been partially supported by project PACS ANR-14-CE28-0002 and Pays de la Loire research project AFSEC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. André, É., Fribourg, L., Sproston, J.: An extension of the inverse method to probabilistic timed automata. Formal Meth. Syst. Des. 42(2), 119–145 (2013)

    Article  MATH  Google Scholar 

  2. Barbuti, R., Levi, F., Milazzo, P., Scatena, G.: Probabilistic model checking of biological systems with uncertain kinetic rates. Theor. Comput. Sci. 419, 2–16 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Benedikt, M., Lenhardt, R., Worrell, J.: LTL model checking of interval markov chains. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS, vol. 7795, pp. 32–46. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  4. Bertrand, N., Fournier, P.: Parameterized verification of many identical probabilistic timed processes. FSTTCS. LIPIcs 24, 501–513 (2013)

    MathSciNet  Google Scholar 

  5. Bertrand, N., Fournier, P., Sangnier, A.: Playing with probabilities in reconfigurable broadcast networks. In: Muscholl, A. (ed.) FOSSACS 2014 (ETAPS). LNCS, vol. 8412, pp. 134–148. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  6. Biondi, F., Legay, A., Nielsen, B.F., Wąsowski, A.: Maximizing entropy over markov processes. In: Dediu, A.-H., Martín-Vide, C., Truthe, B. (eds.) LATA 2013. LNCS, vol. 7810, pp. 128–140. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  7. Caillaud, B., Delahaye, B., Larsen, K., Legay, A., Pedersen, M., Wasowski, A.: Constraint markov chains. Theor. Comput. Sci. 412(34), 4373–4404 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chakraborty, S., Katoen, J.-P.: Model checking of open interval markov chains. In: Remke, A., Manini, D., Gribaudo, M. (eds.) ASMTA 2015. LNCS, vol. 9081, pp. 30–42. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  9. Chamseddine, N., Duflot, M., Fribourg, L., Picaronny, C., Sproston, J.: Computing expected absorption times for parametric determinate probabilistic timed automata. In: QEST, pp. 254–263. IEEE Computer Society (2008)

    Google Scholar 

  10. Chatterjee, K., Sen, K., Henzinger, T.A.: Model-checking \(\omega \)-regular properties of interval markov chains. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 302–317. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Daws, C.: Symbolic and parametric model checking of discrete-time markov chains. In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 280–294. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Dehnert, C., Junges, S., Jansen, N., Corzilius, F., Volk, M., Bruintjes, H., Katoen, J.-P., Ábrahám, E.: PROPhESY: a probabilistic parameter synthesis tool. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 214–231. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  13. Delahaye, B., Katoen, J., Larsen, K., Legay, A., Pedersen, M., Sher, F., Wasowski, A.: Abstract probabilistic automata. Inf. Comput. 232, 66–116 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  14. Delahaye, B., Larsen, K., Legay, A., Pedersen, M., Wasowski, A.: Consistency and refinement for interval Markov chains. J. Log. Algebr. Program. 81(3), 209–226 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. Delahaye, B.: Consistency for parametric interval Markov chains. In: SynCoP, OASIcs, Schloss Dagstuhl (2015)

    Google Scholar 

  16. Delahaye, B., Lime, D., Petrucci, L.: Parameter Synthesis for Parametric Interval Markov Chains. HAL research report hal-01219823 (2015)

    Google Scholar 

  17. Ferrer Fioriti, L.M., Hahn, E.M., Hermanns, H., Wachter, B.: Variable probabilistic abstraction refinement. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561, pp. 300–316. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  18. Gori, R., Levi, F.: An analysis for proving probabilistic termination of biological systems. Theor. Comput. Sci. 471, 27–73 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hahn, E.M., Han, T., Zhang, L.: Synthesis for PCTL in parametric markov decision processes. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 146–161. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  20. Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: \({\sf PARAM}\): a model checker for parametric markov models. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 660–664. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  21. Hahn, E., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric Markov models. Software Tools for Technology Transfer 13(1), 3–19 (2011)

    Article  Google Scholar 

  22. Jonsson, B., Larsen, K.: Specification and refinement of probabilistic processes. In: LICS, pp. 266–277. IEEE Computer (1991)

    Google Scholar 

  23. Lanotte, R., Maggiolo-Schettini, A., Troina, A.: Decidability results for parametric probabilistic transition systems with an application to security. In: SEFM, pp. 114–121. IEEE Computer Society (2004)

    Google Scholar 

  24. Lanotte, R., Maggiolo-Schettini, A., Troina, A.: Parametric probabilistic transition systems for system design and analysis. Formal Aspects Comput. 19(1), 93–109 (2007)

    Article  MATH  Google Scholar 

  25. Sen, K., Viswanathan, M., Agha, G.: Model-checking markov chains in the presence of uncertainties. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 394–410. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoît Delahaye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Delahaye, B., Lime, D., Petrucci, L. (2016). Parameter Synthesis for Parametric Interval Markov Chains. In: Jobstmann, B., Leino, K. (eds) Verification, Model Checking, and Abstract Interpretation. VMCAI 2016. Lecture Notes in Computer Science(), vol 9583. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49122-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49122-5_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49121-8

  • Online ISBN: 978-3-662-49122-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics