Abstract
Interval Markov Chains (IMCs) are the base of a classic probabilistic specification theory introduced by Larsen and Jonsson in 1991. They are also a popular abstraction for probabilistic systems. In this paper we study parameter synthesis for a parametric extension of Interval Markov Chains in which the endpoints of intervals may be replaced with parameters. In particular, we propose constructions for the synthesis of all parameter values ensuring several properties such as consistency and consistent reachability in both the existential and universal settings with respect to implementations. We also discuss how our constructions can be modified in order to synthesise all parameter values ensuring other typical properties.
This work has been partially supported by project PACS ANR-14-CE28-0002 and Pays de la Loire research project AFSEC.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
André, É., Fribourg, L., Sproston, J.: An extension of the inverse method to probabilistic timed automata. Formal Meth. Syst. Des. 42(2), 119–145 (2013)
Barbuti, R., Levi, F., Milazzo, P., Scatena, G.: Probabilistic model checking of biological systems with uncertain kinetic rates. Theor. Comput. Sci. 419, 2–16 (2012)
Benedikt, M., Lenhardt, R., Worrell, J.: LTL model checking of interval markov chains. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS, vol. 7795, pp. 32–46. Springer, Heidelberg (2013)
Bertrand, N., Fournier, P.: Parameterized verification of many identical probabilistic timed processes. FSTTCS. LIPIcs 24, 501–513 (2013)
Bertrand, N., Fournier, P., Sangnier, A.: Playing with probabilities in reconfigurable broadcast networks. In: Muscholl, A. (ed.) FOSSACS 2014 (ETAPS). LNCS, vol. 8412, pp. 134–148. Springer, Heidelberg (2014)
Biondi, F., Legay, A., Nielsen, B.F., Wąsowski, A.: Maximizing entropy over markov processes. In: Dediu, A.-H., Martín-Vide, C., Truthe, B. (eds.) LATA 2013. LNCS, vol. 7810, pp. 128–140. Springer, Heidelberg (2013)
Caillaud, B., Delahaye, B., Larsen, K., Legay, A., Pedersen, M., Wasowski, A.: Constraint markov chains. Theor. Comput. Sci. 412(34), 4373–4404 (2011)
Chakraborty, S., Katoen, J.-P.: Model checking of open interval markov chains. In: Remke, A., Manini, D., Gribaudo, M. (eds.) ASMTA 2015. LNCS, vol. 9081, pp. 30–42. Springer, Heidelberg (2015)
Chamseddine, N., Duflot, M., Fribourg, L., Picaronny, C., Sproston, J.: Computing expected absorption times for parametric determinate probabilistic timed automata. In: QEST, pp. 254–263. IEEE Computer Society (2008)
Chatterjee, K., Sen, K., Henzinger, T.A.: Model-checking \(\omega \)-regular properties of interval markov chains. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 302–317. Springer, Heidelberg (2008)
Daws, C.: Symbolic and parametric model checking of discrete-time markov chains. In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 280–294. Springer, Heidelberg (2005)
Dehnert, C., Junges, S., Jansen, N., Corzilius, F., Volk, M., Bruintjes, H., Katoen, J.-P., Ábrahám, E.: PROPhESY: a probabilistic parameter synthesis tool. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 214–231. Springer, Heidelberg (2015)
Delahaye, B., Katoen, J., Larsen, K., Legay, A., Pedersen, M., Sher, F., Wasowski, A.: Abstract probabilistic automata. Inf. Comput. 232, 66–116 (2013)
Delahaye, B., Larsen, K., Legay, A., Pedersen, M., Wasowski, A.: Consistency and refinement for interval Markov chains. J. Log. Algebr. Program. 81(3), 209–226 (2012)
Delahaye, B.: Consistency for parametric interval Markov chains. In: SynCoP, OASIcs, Schloss Dagstuhl (2015)
Delahaye, B., Lime, D., Petrucci, L.: Parameter Synthesis for Parametric Interval Markov Chains. HAL research report hal-01219823 (2015)
Ferrer Fioriti, L.M., Hahn, E.M., Hermanns, H., Wachter, B.: Variable probabilistic abstraction refinement. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561, pp. 300–316. Springer, Heidelberg (2012)
Gori, R., Levi, F.: An analysis for proving probabilistic termination of biological systems. Theor. Comput. Sci. 471, 27–73 (2013)
Hahn, E.M., Han, T., Zhang, L.: Synthesis for PCTL in parametric markov decision processes. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 146–161. Springer, Heidelberg (2011)
Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: \({\sf PARAM}\): a model checker for parametric markov models. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 660–664. Springer, Heidelberg (2010)
Hahn, E., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric Markov models. Software Tools for Technology Transfer 13(1), 3–19 (2011)
Jonsson, B., Larsen, K.: Specification and refinement of probabilistic processes. In: LICS, pp. 266–277. IEEE Computer (1991)
Lanotte, R., Maggiolo-Schettini, A., Troina, A.: Decidability results for parametric probabilistic transition systems with an application to security. In: SEFM, pp. 114–121. IEEE Computer Society (2004)
Lanotte, R., Maggiolo-Schettini, A., Troina, A.: Parametric probabilistic transition systems for system design and analysis. Formal Aspects Comput. 19(1), 93–109 (2007)
Sen, K., Viswanathan, M., Agha, G.: Model-checking markov chains in the presence of uncertainties. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 394–410. Springer, Heidelberg (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Delahaye, B., Lime, D., Petrucci, L. (2016). Parameter Synthesis for Parametric Interval Markov Chains. In: Jobstmann, B., Leino, K. (eds) Verification, Model Checking, and Abstract Interpretation. VMCAI 2016. Lecture Notes in Computer Science(), vol 9583. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49122-5_18
Download citation
DOI: https://doi.org/10.1007/978-3-662-49122-5_18
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-49121-8
Online ISBN: 978-3-662-49122-5
eBook Packages: Computer ScienceComputer Science (R0)