iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-662-48054-0_28
Parameterized Algorithms for Parity Games | SpringerLink
Skip to main content

Parameterized Algorithms for Parity Games

  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 2015 (MFCS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9235))

Abstract

Determining the winner of a Parity Game is a major problem in computational complexity with a number of applications in verification. In a parameterized complexity setting, the problem has often been considered with parameters such as (directed versions of) treewidth or clique-width, by applying dynamic programming techniques.

In this paper we adopt a parameterized approach which is more inspired by well-known (non-parameterized) algorithms for this problem. We consider a number of natural parameterizations, such as by Directed Feedback Vertex Set, Distance to Tournament, and Modular Width. We show that, for these parameters, it is possible to obtain recursive parameterized algorithms which are simpler, faster and only require polynomial space. We complement these results with some algorithmic lower bounds which, among others, rule out a possible avenue for improving the best-known sub-exponential time algorithm for parity games.

J. Gajarský—Supported by the research centre Institute for Theoretical Computer Science (CE-ITI), project P202/12/G061.

V. Mitsou—Supported by ERC Starting Grant PARAMTIGHT (No. 280152).

S. Ordyniak—Supported by Employment of Newly Graduated Doctors of Science for Scientific Excellence (CZ.1.07/2.3.00/30.0009).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    As usual in parameterized complexity the \(O^*\!\!\left( f(k)\right) \)-notation, for some function f of the parameter k, means that there is an algorithm running in time \(O(f(k)n^{O(1)})\), where n is the input size of the problem.

References

  1. Berwanger, D., Dawar, A., Hunter, P., Kreutzer, S., Obdržálek, J.: The dag-width of directed graphs. J. Comb. Theo. Ser. B 102(4), 900–923 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berwanger, D., Grädel, E., Kaiser, L., Rabinovich, R.: Entanglement and the complexity of directed graphs. Theor. Comput. Sci. 463, 2–25 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bjorklund, H., Sandberg, S., Vorobyov, S.: On fixed-parameter complexity of infinite games. In: Sere, K., Waldén, M. (eds.) The Nordic Workshop on Programming Theory (NWPT 2003), number 34 in Åbo Akademi, Reports on Computer Science and Mathematics, pp. 29–31. Citeseer (2003)

    Google Scholar 

  4. Björklund, H., Sandberg, S., Vorobyov, S.G.: Memoryless determinacy of parity and mean payoff games: a simple proof. Theor. Comput. Sci. 310(1–3), 365–378 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Björklund, H., Vorobyov, S.G.: A combinatorial strongly subexponential strategy improvement algorithm for mean payoff games. Discrete Appl. Math. 155(2), 210–229 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bojanczyk, M., Dittmann, C., Kreutzer, S.: Decomposition theorems and model-checking for the modal \(\mu \)-calculus. In: Henzinger, T.A., Miller, D. (eds.) Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-LICS 2014, Vienna, Austria, July 14–18, 2014, p. 17. ACM (2014)

    Google Scholar 

  7. Browne, A., Clarke, E.M., Jha, S., Long, D.E., Marrero, W.R.: An improved algorithm for the evaluation of fixpoint expressions. Theor. Comput. Sci. 178(1–2), 237–255 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chatterjee, K., Henzinger, T.A.: A survey of stochastic \(\omega \)-regular games. J. Comput. Syst. Sci. 78(2), 394–413 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Condon, A.: The complexity of stochastic games. Inf. Comput. 96(2), 203–224 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dittmann, C., Kreutzer, S., Tomescu, A.I.: Graph operations on parity games and polynomial-time algorithms. arXiv preprint (2012). arXiv:1208.1640

  11. Emerson, E.A., Jutla, C.S.: The complexity of tree automata and logics of programs. SIAM J. Comput. 29(1), 132–158 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Emerson, E.A., Jutla, C.S., Sistla, A.P.: On model checking for the \(\mu \)-calculus and its fragments. Theor. Comput. Sci. 258(1–2), 491–522 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fomin, F.V., Liedloff, M., Montealegre, P., Todinca, I.: Algorithms parameterized by vertex cover and modular width, through potential maximal cliques. In: Ravi, R., Gørtz, I.L. (eds.) SWAT 2014. LNCS, vol. 8503, pp. 182–193. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  14. Gajarský, J., Lampis, M., Ordyniak, S.: Parameterized algorithms for modular-width. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 163–176. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  15. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games: A Guide to Current Research. LNCS, vol. 2500. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  16. Hunter, P., Kreutzer, S.: Digraph measures: kelly decompositions, games, and orderings. Theor. Comput. Sci. 399(3), 206–219 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jurdzinski, M.: Deciding the winner in parity games is in UP cap co-up. Inf. Process. Lett. 68(3), 119–124 (1998)

    Article  MathSciNet  Google Scholar 

  18. Jurdziński, M.: Small progress measures for solving parity games. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 290–301. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  19. Jurdzinski, M., Paterson, M., Zwick, U.: A deterministic subexponential algorithm for solving parity games. SIAM J. Comput. 38(4), 1519–1532 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Küsters, R.: Memoryless determinacy of parity games. In: Grädel, E., Thomas, W., Wilke, T. (eds.) Automata Logics, and Infinite Games. LNCS, vol. 2500, pp. 95–106. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  21. McNaughton, R.: Infinite games played on finite graphs. Ann. Pure Appl. Logic 65(2), 149–184 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Obdržálek, J.: Fast mu-calculus model checking when tree-width is bounded. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 80–92. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  23. Obdržálek, J.: Clique-width and parity games. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 54–68. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  24. Schewe, S.: Solving parity games in big steps. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 449–460. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  25. Zielonka, W.: Infinite games on finitely coloured graphs with applications to automata on infinite trees. Theor. Comput. Sci. 200(1–2), 135–183 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theor. Comput. Sci. 158(1&2), 343–359 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Danupon Nanongkai for suggesting this problem and for our useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Ordyniak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gajarský, J., Lampis, M., Makino, K., Mitsou, V., Ordyniak, S. (2015). Parameterized Algorithms for Parity Games. In: Italiano, G., Pighizzini, G., Sannella, D. (eds) Mathematical Foundations of Computer Science 2015. MFCS 2015. Lecture Notes in Computer Science(), vol 9235. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48054-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48054-0_28

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48053-3

  • Online ISBN: 978-3-662-48054-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics