iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-662-45924-9_41
Chinese Microblog Entity Linking System Combining Wikipedia and Search Engine Retrieval Results | SpringerLink
Skip to main content

Chinese Microblog Entity Linking System Combining Wikipedia and Search Engine Retrieval Results

  • Conference paper
Natural Language Processing and Chinese Computing (NLPCC 2014)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 496))

Abstract

Microblog has provided a convenient and instant platform for information publication and acquisition. Microblog’s short, noisy, real-time features make Chinese Microblog entity linking task a new challenge. In this paper, we investigate the linking approach and introduce the implementation of a Chinese Microblog Entity Linking (CMEL) System. In particular, we first build synonym dictionary and process the special identifier. Then we generate candidate set combining Wikipedia and search engine retrieval results. Finally, we adopt improved VSM to get textual similarity for entity disambiguation. The accuracy of CMEL system is 84.35%, which ranks the second place in NLPCC 2014 Evaluation Entity Linking Task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cucerzan, S.: Large-scale named entity disambiguation based on Wikipedia data. In: Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pp. 708–716 (2007)

    Google Scholar 

  2. Mihalcea, R., Csomai, A.: Wikify! Linking Documents to Encyclopedic Knowledge. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management, pp. 233–242 (2007)

    Google Scholar 

  3. McNamee, P., Dredze, M., Gerber, A., Garera, N., Finin, T., Mayfield, J., Piatko, C., Rao, D., Yarowsky, D., Dreyer, M.: HLTCOE Approaches to Knowledge Base Population at TAC 2009. In: Proceedings of Text Analysis Conference (TAC) (2009)

    Google Scholar 

  4. Zheng, Z., Li, F., Huang, M., Zhu, X.: Learningto Link Entities with Knowledge Base. In: The Proceedings of the Annual Conference of the North American Chapter of the ACL, pp. 483–491 (2010)

    Google Scholar 

  5. Zhang, W., Su, J., Tan, C.L., Wang, W.T.: Entity Linking Leveraging Automatically Generated Annotation. In: Proceedings of the 23rd International Conference on Computational Linguistics, pp. 1290–1298 (2010)

    Google Scholar 

  6. Zhou, Y., Nie, L., Rouhani-Kalleh, O., Vasile, F., Gaffney, S.: Resolving Surface Forms to Wikipedia Topics. In: Proceedings of the 23rd International Conference on Computational Linguistics, pp. 1335–1343 (2010)

    Google Scholar 

  7. Han, X.P., Sun, L.: A Generative Entity-Mention Model for Linking Entities with Knowledge Base. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, vol. 1, pp. 945–954 (2011)

    Google Scholar 

  8. Milne, D., Witten, I.H.: Learning to Link with Wikipedia. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management, pp. 509–518 (2008)

    Google Scholar 

  9. Chen, Z., Ji, H.: Collaborative Ranking: A Case Study on Entity Linking. In: Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pp. 771–781 (2011)

    Google Scholar 

  10. Guo, Y., Qin, B., Liu, T., Li, S.: Microblog Entity Linking by Leveraging Extra Posts. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 863–868 (2013)

    Google Scholar 

  11. Miao, Q., Lu, H., Zhang, S., Meng, Y.: Simple Yet Effective Method for Entity Linking in Microblog-Genre Text. In: Zhou, G., Li, J., Zhao, D., Feng, Y. (eds.) NLPCC 2013. CCIS, vol. 400, pp. 440–447. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  12. Zhu, M., Jia, Z., Zuo, L., Wu, A., et al.: Research on Entity Linking of Chinese Micro Blog. Journal of Peking University (Natural Science Edition) 01, 73–78 (2014) (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Meng, Z., Yu, D., Xun, E. (2014). Chinese Microblog Entity Linking System Combining Wikipedia and Search Engine Retrieval Results. In: Zong, C., Nie, JY., Zhao, D., Feng, Y. (eds) Natural Language Processing and Chinese Computing. NLPCC 2014. Communications in Computer and Information Science, vol 496. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45924-9_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45924-9_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45923-2

  • Online ISBN: 978-3-662-45924-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics