Abstract
Microblog has provided a convenient and instant platform for information publication and acquisition. Microblog’s short, noisy, real-time features make Chinese Microblog entity linking task a new challenge. In this paper, we investigate the linking approach and introduce the implementation of a Chinese Microblog Entity Linking (CMEL) System. In particular, we first build synonym dictionary and process the special identifier. Then we generate candidate set combining Wikipedia and search engine retrieval results. Finally, we adopt improved VSM to get textual similarity for entity disambiguation. The accuracy of CMEL system is 84.35%, which ranks the second place in NLPCC 2014 Evaluation Entity Linking Task.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cucerzan, S.: Large-scale named entity disambiguation based on Wikipedia data. In: Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pp. 708–716 (2007)
Mihalcea, R., Csomai, A.: Wikify! Linking Documents to Encyclopedic Knowledge. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management, pp. 233–242 (2007)
McNamee, P., Dredze, M., Gerber, A., Garera, N., Finin, T., Mayfield, J., Piatko, C., Rao, D., Yarowsky, D., Dreyer, M.: HLTCOE Approaches to Knowledge Base Population at TAC 2009. In: Proceedings of Text Analysis Conference (TAC) (2009)
Zheng, Z., Li, F., Huang, M., Zhu, X.: Learningto Link Entities with Knowledge Base. In: The Proceedings of the Annual Conference of the North American Chapter of the ACL, pp. 483–491 (2010)
Zhang, W., Su, J., Tan, C.L., Wang, W.T.: Entity Linking Leveraging Automatically Generated Annotation. In: Proceedings of the 23rd International Conference on Computational Linguistics, pp. 1290–1298 (2010)
Zhou, Y., Nie, L., Rouhani-Kalleh, O., Vasile, F., Gaffney, S.: Resolving Surface Forms to Wikipedia Topics. In: Proceedings of the 23rd International Conference on Computational Linguistics, pp. 1335–1343 (2010)
Han, X.P., Sun, L.: A Generative Entity-Mention Model for Linking Entities with Knowledge Base. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, vol. 1, pp. 945–954 (2011)
Milne, D., Witten, I.H.: Learning to Link with Wikipedia. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management, pp. 509–518 (2008)
Chen, Z., Ji, H.: Collaborative Ranking: A Case Study on Entity Linking. In: Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pp. 771–781 (2011)
Guo, Y., Qin, B., Liu, T., Li, S.: Microblog Entity Linking by Leveraging Extra Posts. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 863–868 (2013)
Miao, Q., Lu, H., Zhang, S., Meng, Y.: Simple Yet Effective Method for Entity Linking in Microblog-Genre Text. In: Zhou, G., Li, J., Zhao, D., Feng, Y. (eds.) NLPCC 2013. CCIS, vol. 400, pp. 440–447. Springer, Heidelberg (2013)
Zhu, M., Jia, Z., Zuo, L., Wu, A., et al.: Research on Entity Linking of Chinese Micro Blog. Journal of Peking University (Natural Science Edition) 01, 73–78 (2014) (in Chinese)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Meng, Z., Yu, D., Xun, E. (2014). Chinese Microblog Entity Linking System Combining Wikipedia and Search Engine Retrieval Results. In: Zong, C., Nie, JY., Zhao, D., Feng, Y. (eds) Natural Language Processing and Chinese Computing. NLPCC 2014. Communications in Computer and Information Science, vol 496. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45924-9_41
Download citation
DOI: https://doi.org/10.1007/978-3-662-45924-9_41
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-45923-2
Online ISBN: 978-3-662-45924-9
eBook Packages: Computer ScienceComputer Science (R0)