iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-662-45049-9_9
The Modular Inversion in GF(p) by Self-assembling and Its Application to Elliptic Curve Diffie-Hellman Key Exchange | SpringerLink
Skip to main content

The Modular Inversion in GF(p) by Self-assembling and Its Application to Elliptic Curve Diffie-Hellman Key Exchange

  • Conference paper
Bio-Inspired Computing - Theories and Applications

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 472))

  • 1401 Accesses

Abstract

The study of tile self-assembly model shows the development of self-assembling systems for solving complex computational problems. In this paper, we show the method of performing modular inversion in GF(p) by self-assembling with Θ(p) computational tile types in Θ(p) steps. Then, we discuss how the self-assembling systems for computing modular inversion in GF(p) apply to elliptic curve Diffie-Hellman key exchange algorithm. The self-assembled architectures provide the feasibility of cryptanalysis for this algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adleman, L.M.: Molecular Computation of Solutions to Combinatorial Problems. Science 266, 1021–1024 (1994)

    Article  Google Scholar 

  2. Pan, L., Wang, J., Hoogeboom, H.J.: Spiking Neural P Systems with Astrocytes. Neural Computation 24, 805–825 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Pan, L., Zeng, X.: Small Universal Spiking Neural P Systems Working in Exhaustive Mode. IEEE Transactions on Nanobioscience 10, 99–105 (2011)

    Article  Google Scholar 

  4. Pan, L., Pérez-Jiménez, M.J.: Computational Complexity of Tissue-like P Systems. J. Complexity 26, 296–315 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Seeman, N.C.: DNA Nanotechnology: Novel DNA Constructions. Annu. Rev. Biophy. Biomol. Struct. 27, 225–248 (1998)

    Article  Google Scholar 

  6. Barish, R., Rothemund, P.W., Winfree, E.: Two Computational Primitives for Algorithmic Self-assembly: Copying and Counting. Nano Lett. 12, 2586–2592 (2005)

    Article  Google Scholar 

  7. Rothemund, P.W.: Folding DNA to Create Nanoscale Shapes and Patterns. Nature 440, 297–302 (2006)

    Article  Google Scholar 

  8. Lathrop, J.I., Lutz, J.H., Summers, S.M.: Strict Self-assembly of Discrete Sierpinski Triangles. Theor. Comput. Sci. 410, 384–405 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ke, Y., Ong, L.L., Shih, W.M., et al.: Three-dimensional Structures Self-assembled from DNA Bricks. Science 6111, 1177–1183 (2012)

    Article  Google Scholar 

  10. Mao, C., LaBean, T.H., Reif, J.H.: Logical Computation using Algorithmic Self-assembly of DNA Triple-crossover Molecules. Nature 407, 493–496 (2000)

    Article  Google Scholar 

  11. Brun, Y.: Arithmetic Computation in the Tile Assembly Model: Addition and Multiplication. Theor. Comput. Sci. 378, 17–31 (2006)

    Article  MathSciNet  Google Scholar 

  12. Brun, Y.: Nondeterministic Polynomial Time Factoring in the Tile Assembly Model. Theor. Comput. Sci. 395, 3–23 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cheng, Z.: Nondeterministic Algorithm for Breaking Diffie-Hellman Key Exchange using Self-assembly of DNA Tiles. Int. J. Comput. Commun. 7, 616–630 (2012)

    Google Scholar 

  14. Marcelo, E.K., Takagi, N.: A Hardware Algorithm for Modular Multiplication/division. IEEE Transactions on Computers 54, 12–21 (2005)

    Article  Google Scholar 

  15. Koblitz, N.: Elliptic Curve Cryptosystem. Math. Comp. 48, 203–209 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cheng, Z., Huang, Y. (2014). The Modular Inversion in GF(p) by Self-assembling and Its Application to Elliptic Curve Diffie-Hellman Key Exchange. In: Pan, L., Păun, G., Pérez-Jiménez, M.J., Song, T. (eds) Bio-Inspired Computing - Theories and Applications. Communications in Computer and Information Science, vol 472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45049-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45049-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45048-2

  • Online ISBN: 978-3-662-45049-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics