iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-662-45049-9_44
An Improved Particle Swarm Optimization and Its Application for Micro-grid Economic Operation Optimization | SpringerLink
Skip to main content

An Improved Particle Swarm Optimization and Its Application for Micro-grid Economic Operation Optimization

  • Conference paper
Bio-Inspired Computing - Theories and Applications

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 472))

Abstract

A particle swarm optimization algorithm based on adaptive mutation and P systems is proposed to overcome trapping in local optimum solution and low optimization precision in this paper. At the same time, the proposed algorithm is investigated in experiments which are based on the function optimization of micro-grid’s economic operation. Furthermore, the feasibility and effectiveness of the proposed algorithm are showed in the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Huang, L., Wang, N.: An Optimization Algorithm Inspired by Membrane Computing. In: Jiao, L., Wang, L., Gao, X.-b., Liu, J., Wu, F. (eds.) ICNC 2006. LNCS, vol. 4222, pp. 49–52. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Wang, T., Wang, J., Peng, H., Tu, M.: Optimization of PID Controller Parameters based on PSOPS Algorithm. ICIC Express Letters 6(1), 273–280 (2012)

    Google Scholar 

  3. Tu, M., Wang, J., Song, X.X., Yang, F.: An Artificial Fish Swarm Algorithm Based on P Systems. ICIC Express Letters 4(3), 747–753 (2013)

    Google Scholar 

  4. Zhang, G.X., Gheorghe, M., Wu, C.: A Quantum-Inspired Evolutionary Algorithm based on P Systems for a Class of Combinatorial Optimization. Fundam. Inform. 87, 93–116 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Wang, J., Li, Z., Peng, H., Zhang, G.X.: An Extended Spiking Neural P System for Fuzzy Knowledge Representation. Int. J. Inn. Comput. Inf. Control 7(7), 3709–3724 (2011)

    Google Scholar 

  6. Peng, H., Wang, J., Pérez-Jiménez, M.J., Peng, S.: A Novel Image Thresholding Method Based on Membrane Computing and Fuzzy Entropy. J. Int. Fuzzy. Syst. 24(2), 229–237 (2013)

    Google Scholar 

  7. Yang, Y.F., Peng, H., Jiang, Y., Huang, X.L., Zhang, J.R.: A Region-based Image Segmentation Method Under P Systems. J. Inf. Comput. Sci. 10(10), 2943–2950 (2013)

    Article  Google Scholar 

  8. Zhang, T.C., Geng, G.F.: Reactive Power Optimization for Medium Voltage Distribution Network based on Improved Particle Swarm Optimization. Pow. Syst. Technol. 36(2), 158–162 (2012)

    Google Scholar 

  9. Chen, Q.Y., Chen, W.H., Dai, C.H., Zhang, X.X.: Reactive Power Optimization Based on Modified Particle Swarm Optimization Algorithm for Power System. In: Proc. CSU-EPSA, vol. 26(2), pp. 8–13 (2014)

    Google Scholar 

  10. Yang, W.: Optimal Scheduling for Distributed Energy Resource. J. Hefei Univ. Technol. (2010)

    Google Scholar 

  11. Sun, S.J.: Research On The Optimal Configuration and Economic Operation Model Formulti-Energy Micro-Grid. J. Hefei Univ. Technol. (2012)

    Google Scholar 

  12. Katiraei, F., Iravani, R., Hatziargyriou, N.: Micro-grids Management. IEEE Pow. Energy M. 6(3), 54–65 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, T., Wang, J., Sun, Z., Luo, J., He, T., Chen, K. (2014). An Improved Particle Swarm Optimization and Its Application for Micro-grid Economic Operation Optimization. In: Pan, L., Păun, G., Pérez-Jiménez, M.J., Song, T. (eds) Bio-Inspired Computing - Theories and Applications. Communications in Computer and Information Science, vol 472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45049-9_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45049-9_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45048-2

  • Online ISBN: 978-3-662-45049-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics