iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-662-01131-7_12
Time Series Forecasting by Principal Component Methods | SpringerLink
Skip to main content

Time Series Forecasting by Principal Component Methods

  • Conference paper
COMPSTAT

Abstract

On the basis of Functional Principal Component Analysis (FPCA), two forecasting approaches for time series are developed in this paper. The first one uses weighted multiple linear regression among principal components whereas the second one applies Kalman filtering on approximate state-space models. The forecasting performance of both methods is discussed on a real financial time-series.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aguilera, A.M., Gutiérrez, R., Ocaña, F.A. & Valderrama, M.J. (1995). Computational approaches to estimation in the principal component analysis of a stochastic process. Applied Stochastic Models and Data Analysis, 11, 279–299.

    Article  MathSciNet  MATH  Google Scholar 

  • Aguilera, A.M., Gutiérrez, R. & Valderrama, M.J. (1996a). Approximation of estimators in the PCA of a stochastic process using B-splines. Commun. Statist.-Simula., 25, 671–690.

    Article  MATH  Google Scholar 

  • Aguilera, A.M., Ocaña, F.A. & Valderrama, M.J. (1996b). On a weighted principal component model to forecast a continuous time series. In: COMPSTAT96 Proceedings in Computational Statistics (ed. A. Prat), 169–174, Heidelberg: Physica-Verlag.

    Google Scholar 

  • Aguilera, A.M., Ocaña, F.A. & Valderrama, M.J. (1997). An approximated principal component prediction model for continuous time stochastic processes. Appl. Stoch. Models Data Anal., 13, 61–72.

    Article  MATH  Google Scholar 

  • Kailath, T. (1980). Linear Systems. New Jersey: Prentice Hall.

    MATH  Google Scholar 

  • Ramsay, J.O. & Dalzell, C.J. (1991). Some tools for functional data analysis (with discussion). J. R. Statist. Soc. B, 53, 539–572.

    MathSciNet  MATH  Google Scholar 

  • Ramsay, J.O. & Silverman, B.W. (1997). Functional Data Analysis. New York: Springer-Verlag.

    MATH  Google Scholar 

  • Ruiz-Molina, J.C., Valderrama, M.J. & Gutiérrez, R. (1995). Kalman filtering on approximative state-space models. Journal of Optimization Theory and Applications, 84, 415–431.

    Article  MathSciNet  Google Scholar 

  • Taylor, S.J. (1986). Modelling Financial Time Series. Chichester: Wiley.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Valderrama, M.J., Aguilera, A.M., Ruiz-Molina, J.C. (1998). Time Series Forecasting by Principal Component Methods. In: Payne, R., Green, P. (eds) COMPSTAT. Physica, Heidelberg. https://doi.org/10.1007/978-3-662-01131-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-01131-7_12

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-7908-1131-5

  • Online ISBN: 978-3-662-01131-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics