Abstract
On the basis of Functional Principal Component Analysis (FPCA), two forecasting approaches for time series are developed in this paper. The first one uses weighted multiple linear regression among principal components whereas the second one applies Kalman filtering on approximate state-space models. The forecasting performance of both methods is discussed on a real financial time-series.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aguilera, A.M., Gutiérrez, R., Ocaña, F.A. & Valderrama, M.J. (1995). Computational approaches to estimation in the principal component analysis of a stochastic process. Applied Stochastic Models and Data Analysis, 11, 279–299.
Aguilera, A.M., Gutiérrez, R. & Valderrama, M.J. (1996a). Approximation of estimators in the PCA of a stochastic process using B-splines. Commun. Statist.-Simula., 25, 671–690.
Aguilera, A.M., Ocaña, F.A. & Valderrama, M.J. (1996b). On a weighted principal component model to forecast a continuous time series. In: COMPSTAT96 Proceedings in Computational Statistics (ed. A. Prat), 169–174, Heidelberg: Physica-Verlag.
Aguilera, A.M., Ocaña, F.A. & Valderrama, M.J. (1997). An approximated principal component prediction model for continuous time stochastic processes. Appl. Stoch. Models Data Anal., 13, 61–72.
Kailath, T. (1980). Linear Systems. New Jersey: Prentice Hall.
Ramsay, J.O. & Dalzell, C.J. (1991). Some tools for functional data analysis (with discussion). J. R. Statist. Soc. B, 53, 539–572.
Ramsay, J.O. & Silverman, B.W. (1997). Functional Data Analysis. New York: Springer-Verlag.
Ruiz-Molina, J.C., Valderrama, M.J. & Gutiérrez, R. (1995). Kalman filtering on approximative state-space models. Journal of Optimization Theory and Applications, 84, 415–431.
Taylor, S.J. (1986). Modelling Financial Time Series. Chichester: Wiley.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Valderrama, M.J., Aguilera, A.M., Ruiz-Molina, J.C. (1998). Time Series Forecasting by Principal Component Methods. In: Payne, R., Green, P. (eds) COMPSTAT. Physica, Heidelberg. https://doi.org/10.1007/978-3-662-01131-7_12
Download citation
DOI: https://doi.org/10.1007/978-3-662-01131-7_12
Publisher Name: Physica, Heidelberg
Print ISBN: 978-3-7908-1131-5
Online ISBN: 978-3-662-01131-7
eBook Packages: Springer Book Archive