Abstract
We show how optimization methods from economics known as portfolio strategies can be used for minimizing down-load times in the Internet and travel times in freeway traffic. While for Internet traffic, there is an optimal restart frequency for requesting data, freeway traffic can be optimized by a small percentage of vehicles coming from on-ramps. Interestingly, the portfolio strategies can decrease the average waiting or travel times, respectively, as well as their standard deviation (“risk”). In general, portfolio strategies are applicable to systems, in which the distribution of the quantity to be optimized is broad.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
R.M. Lukose and B.A. Huberman, A methodology for managing risk in electronic transactions over the internet, in press, Netnomics, (2000).
B.A. Huberman, R.M. Lukose, and T. Hogg, An economics approach to hard computational problems, Science 275, 51 (1997).
R. Hardin, Collective Action, (Johns Hopkins University Press, 1982).
B.S. Kerner and H. Rehborn, Experimental properties of phase transitions in traffic flow, Phys. Rev. Lett. 79, 4030 (1997)
B.S. Kerner and H. Rehborn, Experimental properties of complexity in traffic flow, Phys. Rev. E 53, R4275 (1996).
H.Y. Lee, H.-W. Lee, and D. Kim, Origin of synchronized traffic flow on highways and its dynamic phase transition, Phys. Rev. Lett. 81, 1130 (1998).
D. Helbing and M. Treiber, Gas-kinetic-based traffic model explaining observed hysteretic phase transition, Phys. Rev. Lett. 81, 3042 (1998);
D. Helbing and M. TreiberJams, waves, and clusters, Science 282, 2001 (1998);
D. Helbing, A. Hennecke, and M. Treiber, Phase diagram of traffic states in the presence of inhomogenities, Phys. Rev. Lett. 82, 4360 (1999).
K. Nagel and S. Rasmussen, Traffic at the edge of chaos, In: Artificial Life IV, R.A. Brooks and P. Maes, (Eds.), (MIT Press, Cambridge, MA, 1994).
D. Helbing, New simulation models for traffic optimization, In: Proc. of the Workshop “Verkehrsplanung und -simulation” V. Claus, D. Helbing, and H.J. Herrmann, (Eds.), (Informatik Verbund Stuttgart, University of Stuttgart, 1999).
P.H.L. Bovy, (Ed.), Motorway Traffic Flow Analysis, (Delft University Press, Delft, 1998).
M. Bando, K. Hasebe, K. Nakanishi, A. Nakayama, A. Shibata, and Y. Sugiyama, Phenomenological study of dynamical model of traffic flow, J. Phys. I Prance 5, 1389 (1995).
D. Helbing and M. Schreckenberg, Cellular automata simulating experimental properties of traffic flows, Phys. Rev. E 59, R2505 (1999).
D. Helbing and B.A. Huberman, Coherent moving states in highway traffic, Nature 396, 738 (1998).
B.A. Huberman and D. Helbing, Economics-based optimization of unstable flows, Europhys. Lett. 47, 196 (1999).
K. Nagel, D.E. Wolf, P. Wagner, and P. Simon, Two-lane traffic rules for cellular automata: A systematic approach, Phys. Rev. E 58, 1425 (1998).
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2000 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Helbing, D., Huberman, B.A., Maurer, S.M. (2000). Optimizing Traffic in Virtual and Real Space. In: Helbing, D., Herrmann, H.J., Schreckenberg, M., Wolf, D.E. (eds) Traffic and Granular Flow ’99. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59751-0_18
Download citation
DOI: https://doi.org/10.1007/978-3-642-59751-0_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-64109-1
Online ISBN: 978-3-642-59751-0
eBook Packages: Springer Book Archive