iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-642-59751-0_18
Optimizing Traffic in Virtual and Real Space | SpringerLink
Skip to main content

Optimizing Traffic in Virtual and Real Space

  • Conference paper
Traffic and Granular Flow ’99

Abstract

We show how optimization methods from economics known as portfolio strategies can be used for minimizing down-load times in the Internet and travel times in freeway traffic. While for Internet traffic, there is an optimal restart frequency for requesting data, freeway traffic can be optimized by a small percentage of vehicles coming from on-ramps. Interestingly, the portfolio strategies can decrease the average waiting or travel times, respectively, as well as their standard deviation (“risk”). In general, portfolio strategies are applicable to systems, in which the distribution of the quantity to be optimized is broad.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R.M. Lukose and B.A. Huberman, A methodology for managing risk in electronic transactions over the internet, in press, Netnomics, (2000).

    Google Scholar 

  2. B.A. Huberman, R.M. Lukose, and T. Hogg, An economics approach to hard computational problems, Science 275, 51 (1997).

    Article  Google Scholar 

  3. R. Hardin, Collective Action, (Johns Hopkins University Press, 1982).

    Google Scholar 

  4. B.S. Kerner and H. Rehborn, Experimental properties of phase transitions in traffic flow, Phys. Rev. Lett. 79, 4030 (1997)

    Article  Google Scholar 

  5. B.S. Kerner and H. Rehborn, Experimental properties of complexity in traffic flow, Phys. Rev. E 53, R4275 (1996).

    Article  Google Scholar 

  6. H.Y. Lee, H.-W. Lee, and D. Kim, Origin of synchronized traffic flow on highways and its dynamic phase transition, Phys. Rev. Lett. 81, 1130 (1998).

    Article  Google Scholar 

  7. D. Helbing and M. Treiber, Gas-kinetic-based traffic model explaining observed hysteretic phase transition, Phys. Rev. Lett. 81, 3042 (1998);

    Article  Google Scholar 

  8. D. Helbing and M. TreiberJams, waves, and clusters, Science 282, 2001 (1998);

    Article  Google Scholar 

  9. D. Helbing, A. Hennecke, and M. Treiber, Phase diagram of traffic states in the presence of inhomogenities, Phys. Rev. Lett. 82, 4360 (1999).

    Article  Google Scholar 

  10. K. Nagel and S. Rasmussen, Traffic at the edge of chaos, In: Artificial Life IV, R.A. Brooks and P. Maes, (Eds.), (MIT Press, Cambridge, MA, 1994).

    Google Scholar 

  11. D. Helbing, New simulation models for traffic optimization, In: Proc. of the Workshop “Verkehrsplanung und -simulation” V. Claus, D. Helbing, and H.J. Herrmann, (Eds.), (Informatik Verbund Stuttgart, University of Stuttgart, 1999).

    Google Scholar 

  12. P.H.L. Bovy, (Ed.), Motorway Traffic Flow Analysis, (Delft University Press, Delft, 1998).

    Google Scholar 

  13. M. Bando, K. Hasebe, K. Nakanishi, A. Nakayama, A. Shibata, and Y. Sugiyama, Phenomenological study of dynamical model of traffic flow, J. Phys. I Prance 5, 1389 (1995).

    Google Scholar 

  14. D. Helbing and M. Schreckenberg, Cellular automata simulating experimental properties of traffic flows, Phys. Rev. E 59, R2505 (1999).

    Article  Google Scholar 

  15. D. Helbing and B.A. Huberman, Coherent moving states in highway traffic, Nature 396, 738 (1998).

    Article  Google Scholar 

  16. B.A. Huberman and D. Helbing, Economics-based optimization of unstable flows, Europhys. Lett. 47, 196 (1999).

    Article  Google Scholar 

  17. K. Nagel, D.E. Wolf, P. Wagner, and P. Simon, Two-lane traffic rules for cellular automata: A systematic approach, Phys. Rev. E 58, 1425 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Helbing, D., Huberman, B.A., Maurer, S.M. (2000). Optimizing Traffic in Virtual and Real Space. In: Helbing, D., Herrmann, H.J., Schreckenberg, M., Wolf, D.E. (eds) Traffic and Granular Flow ’99. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59751-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59751-0_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64109-1

  • Online ISBN: 978-3-642-59751-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics