Abstract
Regular languages and finite automata are among the oldest topics in formal language theory. The formal study of regular languages and finite automata can be traced back to the early forties, when finite state machines were used to model neuron nets by McCulloch and Pitts [83]. Since then, regular languages have been extensively studied. Results of early investigations are, for example, Kleene’s theorem establishing the equivalence of regular expressions and finite automata [69], the introduction of automata with output by Mealy [86] and Moore [88], the introduction of nondeterministic finite automata by Rabin and Scott [99], and the characterization of regular languages by congruences of finite index by Myhill [90] and Nerode [91].
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
A. V. Aho and J. D. Ullman, The Theory of Parsing, Translation,and Compiling, Vol. 1, Prentice-Hall, Englewood Cliffs, N.J., (1972).
A. V. Aho, R. Sethi, and J. D. Ullman, Compilers - Principles,Techniques, and Tools, Addison-Wesley, Reading, (1986).
J. C. M. Baeten and W. P. Weijland, Process Algebra, Cambridge University Press, Cambridge, (1990).
J. L. Balcázar, J. Diaz, and J. Gabarró, Structured Complexity I, II, EATCS Monagraphs on Theoretical Computer Science, vol. 11 and 22, Springer-Verlag, Berlin 1988 and 1990.
Y. Bar-Hillel, M. Perles, and E. Shamir, “On formal properties of simple phrase structure grammars”, Z. Phonetik. Sprachwiss. Kommunikationsforsch. 14 (1961) 143–172.
J.-C. Birget, “State-Complexity of Finite-State Devices, State Compressibility and Incompressibility”, Mathematical Systems Theory 26 (1993) 237–269.
G. Berry and R. Sethi, “From Regular Expressions to Deterministic Automata”, Theoretical Computer Science 48 (1986) 117–126.
J. Berstel, Transductions and Context-Free Languages, Teubner, Stuttgart, (1979).
J. Berstel and M. Morcrette, “Compact representation of patterns by finite automata”, Pixim 89: L’Image Numérique à Paris, André Gagalowicz, ed., Hermes, Paris, (1989), pp.387–395.
J. Berstel and C. Reutenauer, Rational Series and Their Languages, EATCS Monographs on Theoretical Computer Science, Springer-Verlag, Berlin (1988).
W. Brauer, Automatentheorie, Teubner, Stuttgart, (1984).
W. Brauer, “On Minimizing Finite Automata”, EATCS Bulletin 35 (1988) 113–116.
A. Brüggemann-Klein, “Regular expressions into finite automata”, Theoretical Computer Science 120 (1993) 197–213.
A. Brüggemann-Klein and D. Wood, “Deterministic Regular Languages”, Proceedings of STACS’92, Lecture Notes in Computer Science 577, A. Finkel and M. Jantzen (eds.), Springer-Verlag, Berlin (1992) 173–184.
J. A. Brzozowski, “Canonical regular expressions and minimal state graphs for definite events”, Mathematical Theory of Automata, vol. 12 of MRI Symposia Series, Polytechnic Press, NY, (1962), 529–561.
J. A. Brzozowski, “Derivatives of Regular Expressions”, Journal of the ACM 11:4 (1964) 481–494.
J. A. Brzozowski, “Developments in the theory of regular languages”, Information Processing 80, S. H. Lavington edited, Proceedings of IFIP Congress 80, North-Holland, Amsterdam (1980) 29–40.
J. A. Brzozowski, “Open problems about regular languages”, Formal Language Theory - Perspectives and open problems, R. V. Book (ed.), Academic Press, New York, (1980), pp.23–47.
J. A. Brzozowski and E. Leiss, “On Equations for Regular Languages, Finite Automata, and Sequential Networks”, Theoretical Computer Science 10 (1980) 19–35.
J. A. Brzozowski and I. Simon, “Characterization of locally testable events”, Discrete Mathematics 4 (1973) 243–271.
J. A. Brzozowski and M. Yoeli, Digital Networks, Prentice-Hall, Englewood Cliffs, N. J., (1976).
A. K. Chandra and L. J. Stockmeyer, “Alternation”, FOCS 17 (1976) 98–108.
A. K. Chandra, D. C. Kozen, L. J. Stockmeyer, “Alternation”, Journal of the ACM 28 (1981) 114–133.
J. H. Chang, O. H. Ibarra and B. Ravikumar, “Some observations concerning alternating Turing machines using small space”, Inform. Process. Lett. 25 (1987) 1–9.
C.-H. Chang and R. Paige, “From Regular Expressions to DFA’s Using Compressed NFA’s”, Proceedings of the Third Symposium on Combinatorial Pattern Matching (1992) 90–110.
S. Cho and D. Huynh, “The parallel complexity of finite state automata problems”, Technical Report UTDCS-22–88, University of Texas at Dallas, (1988).
D. I. A. Cohen, Introduction to Computer Theory, Wiley, New York, (1991).
K. Culik II and S. Dube, “Rational and Affine Expressions for Image Description”, Discrete Applied Mathematics 41 (1993) 85–120.
K. Culik II and S. Dube, “Affine Automata and Related Techniques for Generation of Complex Images”, Theoretical Computer Science 116 (1993) 373–398.
K. Culik II, F. E. Fich and A. Salomaa, “A Homomorphic Characterization of Regular Languages”, Discrete Applied Mathematics 4 (1982)149–152.
K. Culik II and T. Harju, “Splicing semigroups of dominoes and DNA”, Discrete Applied Mathematics 31 (1991) 261–277.
K. Culik II and J. Karhumäki, “The equivalence problem for single-valued two-way transducers (on NPDTOL languages) is decidable”, SIAM Journal on Computing, vol. 16, no. 2 (1987) 221–230.
K. Culik II and J. Kari, “Image Compression Using Weighted Finite Automata”, Computer and Graphics, vol. 17, 3, (1993) 305–313.
J. Dassow, G. Päun, A. Salomaa, “On Thinness and Slenderness of L Languages”, EATCS Bulletin 49 (1993) 152–158.
F. Dejean and M. P. Schützenberger, “On a question of Eggan”, Information and Control 9 (1966) 23–25.
A. de Luca and S. Varricchio, “On noncounting regular classes”, Theoretical Computer Science 100 (1992) 67–104.
V. Diekert and G. Rozenberg (ed.), The Book of Traces, World Scientific, Singapore, (1995).
D. Drusinsky and D. Harel, “On the power of bounded concurrency I: Finite automata”, Journal of the ACM 41 (1994) 517–539.
L. C. Eggan, “Transition graphs and the star height of regular events”, Michigan Math. J. 10 (1963) 385–397.
A. Ehrenfeucht, R. Parikh, and G. Rozenberg, “Pumping Lemmas for Regular Sets”, SIAM Journal on Computing vol. 10, no. 3 (1981) 536–541.
S. Eilenberg, Automata, Languages,and Machines, Vol. A, Academic Press, New York, (1974).
S. Eilenberg, Automata, Languages,and Machines, Vol. B, Academic Press, New York, (1974)
C. C. Elgot and J. D. Rutledge, “Operations on finite automata”, Proc. AIEE Second Ann. Symp. on Switching Theory and Logical Design, Detroit, (1961).
A. Fellah, Alternating Finite Automata and Related Problems, PhD Dissertation, Dept. of Math. and Computer Sci., Kent State University, (1991).
A. Fellah, H. Jürgensen, S. Yu, “Constructions for alternating finite automata”, Intern. J. Computer Math. 35 (1990) 117–132.
M. R. Carey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San Francisco, (1979.)
S. Ginsburg, Algebraic and automata-theoretic properties of formal languages, North-Holland, Amsterdam, (1975).
V. M. Glushkov, “The abstract theory of automata”, Russian Mathematics Surveys 16 (1961) 1–53.
D. Gries, “Describing an Algorithm by Hoperoft”, Acta Informatica 2 (1973) 97–109.
L. Guo, K. Salomaa, and S. Yu, “Synchronization Expressions and Languages”, Proceedings of the Sixth IEEE Symposium on Parallel and Distributed Processing (1994) 257–264.
M. A. Harrison, Introduction to Formal Language Theory, Addison-Wesley, Reading, (1978).
K. Hashiguchi, “Algorithms for Determining Relative Star Height and Star Height”, Information and Computation 78 (1988) 124–169.
T. Head, “Formal language theory and DNA: An analysis of the generative capacity of specific recombinant behaviors”, Bull. Math. Biol. 49 (1987) 737–759.
F. C. Hennie, Finite-State Models for Logical Machines, Wiley, New York, (1968).
T. Hirst and D. Harel, “On the power of bounded concurrency II: Pushdown automata”, Journal of the ACM 41 (1994), 540–554.
J. E. Hoperoft, “An n log n algorithm for minimizing states in a finite automaton”, in Theory of Machines and Computations, Z. Kohavi (ed.), Academic Press, New York, (1971).
J. E. Hoperoft and J. D. Ullman, Introduction to Automata Theory,Languages, and Computation, Addison-Wesley, Reading, (1979), 189–196.
J. M. Howie, Automata and Languages, Oxford University Press, Oxford, (1991).
H. B. Hunt, D. J. Rosenkrantz, and T. G. Szymanski, “On the Equivalence, Containment, and Covering Problems for the Regular and Context-Free Languages”, Journal of Computer and System Sciences 12 (1976) 222–268.
O. Ibarra, “The unsolvability of the equivalence problem for epsilon-free NGSM’s with unary input (output) alphabet and applications”, SIAM Journal on Computing 4 (1978) 524–532.
K. Inoue, I. Takanami, and H. Tanaguchi, “Two-Dimensional alternating Turing machines”, Proc. 14th Ann. ACM Symp. On Theory of Computing (1982) 37–46.
K. Inoue, I. Takanami, and H. Tanaguchi, “A note on alternating on-line Turing machines”, Information Processing Letters 15:4 (1982) 164–168.
J. Jaffe, “A necessary and sufficient pumping lemma for regular languages”, SIGACT News (1978) 48–49.
T. Jiang and B. Ravikumar, “A note on the space complexity of some decision problems for finite automata”, Information Processing Letters 40 (1991) 25–31.
T. Jiang and B. Ravikumar, “Minimal NFA Problems are Hard”, SIAM Journal on Computing 22 (1993), 1117–1141. Proceedings of 18th ICALP, Lecture Notes in Computer Science 510, Springer-Verlag, Berlin (1991) 629–640.
N. Jones, “Space-bounded reducibility among combinatorial problems”, Journal of Computer and System Sciences 11 (1975) 68–85.
T. Kameda and P. Weiner, “On the state minimization of nondeterministic finite automata”, IEEE Trans. on Computers C-19 (1970) 617–627.
D. Kelley, Automata and Formal Languages - An Introduction, Prentice-Hall, Englewood Cliffs, N. J., (1995).
S. C. Kleene, “Representation of events in nerve nets and finite automata”, Automata Studies, Princeton Univ. Press, Princeton, N. J., (1996), pp.2–42.
D. E. Knuth, J. H. Morris, and V. R. Pratt, “Fast pattern matching in strings”, SIAM Journal on Computing, vol.6, no.2 (1977) 323–350.
D. Kozen, “On parallelism in Turing machines”, Proceedings of 17th FOCS (1976) 89–97.
R. E. Ladner, R. J. Lipton and L. J. Stockmeyer, “Alternating pushdown automata”, Proc. 19th IEEE Symp. on Foundations of Computer Science, Ann Arbor, MI, (1978) 92–106.
E. Leiss, “Succinct representation of regular languages by boolean automata”, Theoretical Computer Science 13 (1981) 323–330.
E. Leiss, “On generalized language equations”, Theoretical Computer Science 14 (1981) 63–77.
E. Leiss, “Succinct representation of regular languages by boolean automata II”, Theoretical Computer Science 38 (1985) 133–136.
E. Leiss, “Language equations over a one-letter alphabet with union, concatenation and star: a complete solution”, Theoretical Computer Science 131 (1994) 311–330.
E. Leiss, “Unrestricted complementation in language equations over a one-letter alphabet”, Theoretical Computer Science 132 (1994) 71–84.
H. R. Lewis and C. H. Papadimitriou, Elements of the Theory of Computation, Prentice-Hall, Englewood Cliffs, N. J., (1981).
P. A. Lindsay, “Alternation and w-type Turing acceptors”, Theoretical Computer Science 43 (1986) 107–115.
P. Linz, An Introduction to Formal Languages and Automata, D. C. Heath and Company, Lexington, (1990).
O. B. Lupanow, “über den Vergleich zweier Typen endlicher Quellen”, Prob-lerne der Kybernetik 6 (1966) 328–335, and Problemy Kibernetiki 6 (1962) (Russian original).
A. Mateescu, “Scattered deletion and commutativity”, Theoretical Computer Science 125 (1994) 361–371.
W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity”, Bull. Math. Biophysics 5 (1943) 115–133.
R. McNaughton, Counter-Free Automata, MIT Press, Cambridge, (1971).
R. McNaughton and H. Yamada, “Regular Expressions and State Graphs for Automata”, Trans. IRS EC-9 (1960) 39–47. Also in Sequential Machines - Selected Papers, E. F. Moore ed., Addison-Wesley, Reading, (1964), 157–174.
G. H. Mealy, “A method for synthesizing sequential circuits”, Bell System Technical J. 34: 5 (1955), 1045–1079.
A. R. Meyer and M. J. Fischer. “Economy of description by automata, grammars, and formal systems”, FOCS 12 (1971) 188–191.
E. F. Moore, “Gedanken experiments on sequential machines”, Automata Studies, Princeton Univ. Press, Princeton, N.J., (1966), pp.129–153.
F. R. Moore, “On the Bounds for State-Set Size in the Proofs of Equivalence Between Deterministic, Nondeterministic, and Two-Way Finite Automata”, IEEE Trans. Computers 20 (1971), 1211–1214.
J. Myhill, “Finite automata and the representation of events”, WADD TR-57624, Wright Patterson AFB, Ohio, (1957), 112–137.
A. Nerode, “Linear automata transformation”, Proceedings of AMS 9 (1958) 541–544.
O. Nierstrasz, “Regular Types for Active Objects”, OOPSLA’93, 1–15.
M. Nivat, “Transductions des langages de Chomsky”, Ann. Inst. Fourier, Grenoble 18 (1968) 339–456.
W. J. Paul, E. J. Prauss and R. Reischuck, “On Alternation”, Acta Inform. 14 (1980) 243–255.
G. Páun and A. Salomaa, “Decision problems concerning the thinness of DOL languages”, EATCS Bulletin 46 (1992) 171–181.
G. Páun and A. Salomaa, “Closure properties of slender languages”, Theoretical Computer Science 120 (1993) 293–301.
G. Patin and A. Salomaa, “Thin and slender languages”, Discrete Applied Mathematics 61 (1995) 257–270.
D. Perrin, (Chapter 1) Finite Automata, Handbook of Theoretical Computer Science, Vol. B, J. van Leeuwen (ed.), MIT Press, (1990).
M. O. Rabin and D. Scott, “Finite automata and their decision problems”, IBM J. Res. 3: 2 (1959) 115–125.
G. N. Raney, “Sequential functions”, Journal of the ACM 5 (1958) 177.
B. Ravikumar, “Some applications of a technique of Sakoda and Sipser”, SIGACT News, 21:4 (1990) 73–77.
B. Ravikumar and O. H. Ibarra, “Relating the type of ambiguity of finite automata to the succinctness of their representation”, SIAM Journal on Computing vol. 18, no. 6 (1989), 1263–1282.
W. L. Ruzzo, “Tree-size bounded alternation”, Journal of Computer and System Sciences 21 (1980) 218–235.
A. Salomaa, On the Reducibility of Events Represented in Automata, Annales Academiae Scientiarum Fennicae, Series A, I. Mathematica 353, (1964).
A. Salomaa, Theorems on the Representation of events in Moore-Automata, Turun Yliopiston Julkaisuja Annales Universitatis Turkuensis, Series A, 69, (1964).
A. Salomaa, Theory of Automata, Pergamon Press, Oxford, (1969).
A. Salomaa, Jewels of Formal Language Theory, Computer Science Press, Rockville, Maryland, (1981).
A. Salomaa, Computation and Automata, Cambridge University Press, Cambridge, (1985).
A. Salomaa and M. Soittola, Automata-Theoretic Aspects of Formal Power Series, Springer-Verlag, New York, (1978).
K. Salomaa and S. Yu, “Loop-Free Alternating Finite Automata”, Technical Report 482, Department of Computer Science, Univ. of Western Ontatio, (1996).
K. Salomaa, S. Yu, Q. Zhuang, “The state complexities of some basic operations on regular languages”, Theoretical Computer Science 125 (1994) 315–328.
M. P. Schützenberger, “Finite Counting Automata”, Information and Control 5 (1962) 91–107.
M. P. Schützenberger, “On finite monoids having only trivial subgroups”, Information and Control 8 (1965) 190–194.
M.P. Schützenberger, “Sur les relations rationelles”, in Proc. 2nd GI Conference, Automata Theory and Formal languages, H. Braklage (ed.), Lecture Notes in Computer Science 33, Springer-Verlag, Berlin (1975) 209–213.
J. Shallit, “Numeration systems, linear recurrences, and regular sets”, Information and Computation 113 (1994) 331–347.
J. Shallit and J. Stolfi, “Two methods for generating fractals”, Computers & Graphics 13 (1989) 185–191.
P. W. Shor, “A Counterexample to the triangle conjecture”, J. Combinatorial Theory, Series A (1985) 110–112.
J. L. A. van de Snepscheut, What Computing Is All About, Springer-Verlag, New York, (1993).
L. Stockmeyer and A. Meyer, “Word problems requiring exponential time (preliminary report)”, Proceedings of the 5th ACM Symposium on Theory of Computing, (1973) 1–9.
A. Szilard, S. Yu, K. Zhang, and J. Shallit, “Characterizing Regular Languages with Polynomial Densities”, Proceedings of the 17th International Symposium on Mathematical Foundations of Computer Science, Lecture Notes in Computer Science 629 Springer-Verlag, Berlin (1992) 494–503.
K. Thompson, “Regular Expression Search Algorithm”, Communications of the ACM 11:6 (1968) 410–422.
B. W. Watson, Taxonomies and Toolkits of Regular Language Algorithms, PhD Dissertation, Department of Mathematics and Computing Science, Eindhoven University of Technology, (1995).
D. Wood, Theory of Computation, Wiley, New York, (1987).
S. Yu and Q. Zhuang, “On the State Complexity of Intersection of Regular Languages”, ACM SIGACT News, vol. 22, no. 3, (1991) 52–54.
Y. Zalcstein, “Locally testable languages”, Journal of Computer and System Sciences 6 (1972) 151–167.
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Yu, S. (1997). Regular Languages. In: Rozenberg, G., Salomaa, A. (eds) Handbook of Formal Languages. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59136-5_2
Download citation
DOI: https://doi.org/10.1007/978-3-642-59136-5_2
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-63863-3
Online ISBN: 978-3-642-59136-5
eBook Packages: Springer Book Archive