iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-642-59136-5_2
Regular Languages | SpringerLink
Skip to main content

Regular Languages

  • Chapter
  • First Online:
Handbook of Formal Languages

Abstract

Regular languages and finite automata are among the oldest topics in formal language theory. The formal study of regular languages and finite automata can be traced back to the early forties, when finite state machines were used to model neuron nets by McCulloch and Pitts [83]. Since then, regular languages have been extensively studied. Results of early investigations are, for example, Kleene’s theorem establishing the equivalence of regular expressions and finite automata [69], the introduction of automata with output by Mealy [86] and Moore [88], the introduction of nondeterministic finite automata by Rabin and Scott [99], and the characterization of regular languages by congruences of finite index by Myhill [90] and Nerode [91].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. V. Aho and J. D. Ullman, The Theory of Parsing, Translation,and Compiling, Vol. 1, Prentice-Hall, Englewood Cliffs, N.J., (1972).

    Google Scholar 

  2. A. V. Aho, R. Sethi, and J. D. Ullman, Compilers - Principles,Techniques, and Tools, Addison-Wesley, Reading, (1986).

    MATH  Google Scholar 

  3. J. C. M. Baeten and W. P. Weijland, Process Algebra, Cambridge University Press, Cambridge, (1990).

    MATH  Google Scholar 

  4. J. L. Balcázar, J. Diaz, and J. Gabarró, Structured Complexity I, II, EATCS Monagraphs on Theoretical Computer Science, vol. 11 and 22, Springer-Verlag, Berlin 1988 and 1990.

    Google Scholar 

  5. Y. Bar-Hillel, M. Perles, and E. Shamir, “On formal properties of simple phrase structure grammars”, Z. Phonetik. Sprachwiss. Kommunikationsforsch. 14 (1961) 143–172.

    MathSciNet  MATH  Google Scholar 

  6. J.-C. Birget, “State-Complexity of Finite-State Devices, State Compressibility and Incompressibility”, Mathematical Systems Theory 26 (1993) 237–269.

    MathSciNet  MATH  Google Scholar 

  7. G. Berry and R. Sethi, “From Regular Expressions to Deterministic Automata”, Theoretical Computer Science 48 (1986) 117–126.

    MathSciNet  MATH  Google Scholar 

  8. J. Berstel, Transductions and Context-Free Languages, Teubner, Stuttgart, (1979).

    MATH  Google Scholar 

  9. J. Berstel and M. Morcrette, “Compact representation of patterns by finite automata”, Pixim 89: L’Image Numérique à Paris, André Gagalowicz, ed., Hermes, Paris, (1989), pp.387–395.

    Google Scholar 

  10. J. Berstel and C. Reutenauer, Rational Series and Their Languages, EATCS Monographs on Theoretical Computer Science, Springer-Verlag, Berlin (1988).

    MATH  Google Scholar 

  11. W. Brauer, Automatentheorie, Teubner, Stuttgart, (1984).

    MATH  Google Scholar 

  12. W. Brauer, “On Minimizing Finite Automata”, EATCS Bulletin 35 (1988) 113–116.

    MATH  Google Scholar 

  13. A. Brüggemann-Klein, “Regular expressions into finite automata”, Theoretical Computer Science 120 (1993) 197–213.

    MathSciNet  MATH  Google Scholar 

  14. A. Brüggemann-Klein and D. Wood, “Deterministic Regular Languages”, Proceedings of STACS’92, Lecture Notes in Computer Science 577, A. Finkel and M. Jantzen (eds.), Springer-Verlag, Berlin (1992) 173–184.

    Google Scholar 

  15. J. A. Brzozowski, “Canonical regular expressions and minimal state graphs for definite events”, Mathematical Theory of Automata, vol. 12 of MRI Symposia Series, Polytechnic Press, NY, (1962), 529–561.

    Google Scholar 

  16. J. A. Brzozowski, “Derivatives of Regular Expressions”, Journal of the ACM 11:4 (1964) 481–494.

    MathSciNet  MATH  Google Scholar 

  17. J. A. Brzozowski, “Developments in the theory of regular languages”, Information Processing 80, S. H. Lavington edited, Proceedings of IFIP Congress 80, North-Holland, Amsterdam (1980) 29–40.

    Google Scholar 

  18. J. A. Brzozowski, “Open problems about regular languages”, Formal Language Theory - Perspectives and open problems, R. V. Book (ed.), Academic Press, New York, (1980), pp.23–47.

    Google Scholar 

  19. J. A. Brzozowski and E. Leiss, “On Equations for Regular Languages, Finite Automata, and Sequential Networks”, Theoretical Computer Science 10 (1980) 19–35.

    MathSciNet  MATH  Google Scholar 

  20. J. A. Brzozowski and I. Simon, “Characterization of locally testable events”, Discrete Mathematics 4 (1973) 243–271.

    MathSciNet  MATH  Google Scholar 

  21. J. A. Brzozowski and M. Yoeli, Digital Networks, Prentice-Hall, Englewood Cliffs, N. J., (1976).

    MATH  Google Scholar 

  22. A. K. Chandra and L. J. Stockmeyer, “Alternation”, FOCS 17 (1976) 98–108.

    MathSciNet  MATH  Google Scholar 

  23. A. K. Chandra, D. C. Kozen, L. J. Stockmeyer, “Alternation”, Journal of the ACM 28 (1981) 114–133.

    MathSciNet  MATH  Google Scholar 

  24. J. H. Chang, O. H. Ibarra and B. Ravikumar, “Some observations concerning alternating Turing machines using small space”, Inform. Process. Lett. 25 (1987) 1–9.

    MathSciNet  MATH  Google Scholar 

  25. C.-H. Chang and R. Paige, “From Regular Expressions to DFA’s Using Compressed NFA’s”, Proceedings of the Third Symposium on Combinatorial Pattern Matching (1992) 90–110.

    MATH  Google Scholar 

  26. S. Cho and D. Huynh, “The parallel complexity of finite state automata problems”, Technical Report UTDCS-22–88, University of Texas at Dallas, (1988).

    MATH  Google Scholar 

  27. D. I. A. Cohen, Introduction to Computer Theory, Wiley, New York, (1991).

    Google Scholar 

  28. K. Culik II and S. Dube, “Rational and Affine Expressions for Image Description”, Discrete Applied Mathematics 41 (1993) 85–120.

    MathSciNet  MATH  Google Scholar 

  29. K. Culik II and S. Dube, “Affine Automata and Related Techniques for Generation of Complex Images”, Theoretical Computer Science 116 (1993) 373–398.

    MathSciNet  MATH  Google Scholar 

  30. K. Culik II, F. E. Fich and A. Salomaa, “A Homomorphic Characterization of Regular Languages”, Discrete Applied Mathematics 4 (1982)149–152.

    MathSciNet  MATH  Google Scholar 

  31. K. Culik II and T. Harju, “Splicing semigroups of dominoes and DNA”, Discrete Applied Mathematics 31 (1991) 261–277.

    MathSciNet  MATH  Google Scholar 

  32. K. Culik II and J. Karhumäki, “The equivalence problem for single-valued two-way transducers (on NPDTOL languages) is decidable”, SIAM Journal on Computing, vol. 16, no. 2 (1987) 221–230.

    MathSciNet  MATH  Google Scholar 

  33. K. Culik II and J. Kari, “Image Compression Using Weighted Finite Automata”, Computer and Graphics, vol. 17, 3, (1993) 305–313.

    Google Scholar 

  34. J. Dassow, G. Päun, A. Salomaa, “On Thinness and Slenderness of L Languages”, EATCS Bulletin 49 (1993) 152–158.

    MATH  Google Scholar 

  35. F. Dejean and M. P. Schützenberger, “On a question of Eggan”, Information and Control 9 (1966) 23–25.

    MathSciNet  MATH  Google Scholar 

  36. A. de Luca and S. Varricchio, “On noncounting regular classes”, Theoretical Computer Science 100 (1992) 67–104.

    MathSciNet  MATH  Google Scholar 

  37. V. Diekert and G. Rozenberg (ed.), The Book of Traces, World Scientific, Singapore, (1995).

    Google Scholar 

  38. D. Drusinsky and D. Harel, “On the power of bounded concurrency I: Finite automata”, Journal of the ACM 41 (1994) 517–539.

    MathSciNet  MATH  Google Scholar 

  39. L. C. Eggan, “Transition graphs and the star height of regular events”, Michigan Math. J. 10 (1963) 385–397.

    MathSciNet  MATH  Google Scholar 

  40. A. Ehrenfeucht, R. Parikh, and G. Rozenberg, “Pumping Lemmas for Regular Sets”, SIAM Journal on Computing vol. 10, no. 3 (1981) 536–541.

    MathSciNet  MATH  Google Scholar 

  41. S. Eilenberg, Automata, Languages,and Machines, Vol. A, Academic Press, New York, (1974).

    MATH  Google Scholar 

  42. S. Eilenberg, Automata, Languages,and Machines, Vol. B, Academic Press, New York, (1974)

    MATH  Google Scholar 

  43. C. C. Elgot and J. D. Rutledge, “Operations on finite automata”, Proc. AIEE Second Ann. Symp. on Switching Theory and Logical Design, Detroit, (1961).

    Google Scholar 

  44. A. Fellah, Alternating Finite Automata and Related Problems, PhD Dissertation, Dept. of Math. and Computer Sci., Kent State University, (1991).

    Google Scholar 

  45. A. Fellah, H. Jürgensen, S. Yu, “Constructions for alternating finite automata”, Intern. J. Computer Math. 35 (1990) 117–132.

    MATH  Google Scholar 

  46. M. R. Carey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San Francisco, (1979.)

    Google Scholar 

  47. S. Ginsburg, Algebraic and automata-theoretic properties of formal languages, North-Holland, Amsterdam, (1975).

    MATH  Google Scholar 

  48. V. M. Glushkov, “The abstract theory of automata”, Russian Mathematics Surveys 16 (1961) 1–53.

    MathSciNet  MATH  Google Scholar 

  49. D. Gries, “Describing an Algorithm by Hoperoft”, Acta Informatica 2 (1973) 97–109.

    MATH  Google Scholar 

  50. L. Guo, K. Salomaa, and S. Yu, “Synchronization Expressions and Languages”, Proceedings of the Sixth IEEE Symposium on Parallel and Distributed Processing (1994) 257–264.

    Google Scholar 

  51. M. A. Harrison, Introduction to Formal Language Theory, Addison-Wesley, Reading, (1978).

    MATH  Google Scholar 

  52. K. Hashiguchi, “Algorithms for Determining Relative Star Height and Star Height”, Information and Computation 78 (1988) 124–169.

    MathSciNet  MATH  Google Scholar 

  53. T. Head, “Formal language theory and DNA: An analysis of the generative capacity of specific recombinant behaviors”, Bull. Math. Biol. 49 (1987) 737–759.

    MathSciNet  MATH  Google Scholar 

  54. F. C. Hennie, Finite-State Models for Logical Machines, Wiley, New York, (1968).

    MATH  Google Scholar 

  55. T. Hirst and D. Harel, “On the power of bounded concurrency II: Pushdown automata”, Journal of the ACM 41 (1994), 540–554.

    MathSciNet  MATH  Google Scholar 

  56. J. E. Hoperoft, “An n log n algorithm for minimizing states in a finite automaton”, in Theory of Machines and Computations, Z. Kohavi (ed.), Academic Press, New York, (1971).

    Google Scholar 

  57. J. E. Hoperoft and J. D. Ullman, Introduction to Automata Theory,Languages, and Computation, Addison-Wesley, Reading, (1979), 189–196.

    Google Scholar 

  58. J. M. Howie, Automata and Languages, Oxford University Press, Oxford, (1991).

    MATH  Google Scholar 

  59. H. B. Hunt, D. J. Rosenkrantz, and T. G. Szymanski, “On the Equivalence, Containment, and Covering Problems for the Regular and Context-Free Languages”, Journal of Computer and System Sciences 12 (1976) 222–268.

    MathSciNet  MATH  Google Scholar 

  60. O. Ibarra, “The unsolvability of the equivalence problem for epsilon-free NGSM’s with unary input (output) alphabet and applications”, SIAM Journal on Computing 4 (1978) 524–532.

    MATH  Google Scholar 

  61. K. Inoue, I. Takanami, and H. Tanaguchi, “Two-Dimensional alternating Turing machines”, Proc. 14th Ann. ACM Symp. On Theory of Computing (1982) 37–46.

    Google Scholar 

  62. K. Inoue, I. Takanami, and H. Tanaguchi, “A note on alternating on-line Turing machines”, Information Processing Letters 15:4 (1982) 164–168.

    MathSciNet  MATH  Google Scholar 

  63. J. Jaffe, “A necessary and sufficient pumping lemma for regular languages”, SIGACT News (1978) 48–49.

    MATH  Google Scholar 

  64. T. Jiang and B. Ravikumar, “A note on the space complexity of some decision problems for finite automata”, Information Processing Letters 40 (1991) 25–31.

    MathSciNet  MATH  Google Scholar 

  65. T. Jiang and B. Ravikumar, “Minimal NFA Problems are Hard”, SIAM Journal on Computing 22 (1993), 1117–1141. Proceedings of 18th ICALP, Lecture Notes in Computer Science 510, Springer-Verlag, Berlin (1991) 629–640.

    Google Scholar 

  66. N. Jones, “Space-bounded reducibility among combinatorial problems”, Journal of Computer and System Sciences 11 (1975) 68–85.

    MathSciNet  MATH  Google Scholar 

  67. T. Kameda and P. Weiner, “On the state minimization of nondeterministic finite automata”, IEEE Trans. on Computers C-19 (1970) 617–627.

    MathSciNet  MATH  Google Scholar 

  68. D. Kelley, Automata and Formal Languages - An Introduction, Prentice-Hall, Englewood Cliffs, N. J., (1995).

    Google Scholar 

  69. S. C. Kleene, “Representation of events in nerve nets and finite automata”, Automata Studies, Princeton Univ. Press, Princeton, N. J., (1996), pp.2–42.

    Google Scholar 

  70. D. E. Knuth, J. H. Morris, and V. R. Pratt, “Fast pattern matching in strings”, SIAM Journal on Computing, vol.6, no.2 (1977) 323–350.

    MathSciNet  MATH  Google Scholar 

  71. D. Kozen, “On parallelism in Turing machines”, Proceedings of 17th FOCS (1976) 89–97.

    Google Scholar 

  72. R. E. Ladner, R. J. Lipton and L. J. Stockmeyer, “Alternating pushdown automata”, Proc. 19th IEEE Symp. on Foundations of Computer Science, Ann Arbor, MI, (1978) 92–106.

    MATH  Google Scholar 

  73. E. Leiss, “Succinct representation of regular languages by boolean automata”, Theoretical Computer Science 13 (1981) 323–330.

    MathSciNet  MATH  Google Scholar 

  74. E. Leiss, “On generalized language equations”, Theoretical Computer Science 14 (1981) 63–77.

    MathSciNet  MATH  Google Scholar 

  75. E. Leiss, “Succinct representation of regular languages by boolean automata II”, Theoretical Computer Science 38 (1985) 133–136.

    MathSciNet  MATH  Google Scholar 

  76. E. Leiss, “Language equations over a one-letter alphabet with union, concatenation and star: a complete solution”, Theoretical Computer Science 131 (1994) 311–330.

    MathSciNet  MATH  Google Scholar 

  77. E. Leiss, “Unrestricted complementation in language equations over a one-letter alphabet”, Theoretical Computer Science 132 (1994) 71–84.

    MathSciNet  MATH  Google Scholar 

  78. H. R. Lewis and C. H. Papadimitriou, Elements of the Theory of Computation, Prentice-Hall, Englewood Cliffs, N. J., (1981).

    MATH  Google Scholar 

  79. P. A. Lindsay, “Alternation and w-type Turing acceptors”, Theoretical Computer Science 43 (1986) 107–115.

    MathSciNet  MATH  Google Scholar 

  80. P. Linz, An Introduction to Formal Languages and Automata, D. C. Heath and Company, Lexington, (1990).

    MATH  Google Scholar 

  81. O. B. Lupanow, “über den Vergleich zweier Typen endlicher Quellen”, Prob-lerne der Kybernetik 6 (1966) 328–335, and Problemy Kibernetiki 6 (1962) (Russian original).

    Google Scholar 

  82. A. Mateescu, “Scattered deletion and commutativity”, Theoretical Computer Science 125 (1994) 361–371.

    MathSciNet  MATH  Google Scholar 

  83. W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity”, Bull. Math. Biophysics 5 (1943) 115–133.

    MathSciNet  MATH  Google Scholar 

  84. R. McNaughton, Counter-Free Automata, MIT Press, Cambridge, (1971).

    Google Scholar 

  85. R. McNaughton and H. Yamada, “Regular Expressions and State Graphs for Automata”, Trans. IRS EC-9 (1960) 39–47. Also in Sequential Machines - Selected Papers, E. F. Moore ed., Addison-Wesley, Reading, (1964), 157–174.

    Google Scholar 

  86. G. H. Mealy, “A method for synthesizing sequential circuits”, Bell System Technical J. 34: 5 (1955), 1045–1079.

    MathSciNet  Google Scholar 

  87. A. R. Meyer and M. J. Fischer. “Economy of description by automata, grammars, and formal systems”, FOCS 12 (1971) 188–191.

    Google Scholar 

  88. E. F. Moore, “Gedanken experiments on sequential machines”, Automata Studies, Princeton Univ. Press, Princeton, N.J., (1966), pp.129–153.

    Google Scholar 

  89. F. R. Moore, “On the Bounds for State-Set Size in the Proofs of Equivalence Between Deterministic, Nondeterministic, and Two-Way Finite Automata”, IEEE Trans. Computers 20 (1971), 1211–1214.

    MATH  Google Scholar 

  90. J. Myhill, “Finite automata and the representation of events”, WADD TR-57624, Wright Patterson AFB, Ohio, (1957), 112–137.

    Google Scholar 

  91. A. Nerode, “Linear automata transformation”, Proceedings of AMS 9 (1958) 541–544.

    MATH  Google Scholar 

  92. O. Nierstrasz, “Regular Types for Active Objects”, OOPSLA’93, 1–15.

    Google Scholar 

  93. M. Nivat, “Transductions des langages de Chomsky”, Ann. Inst. Fourier, Grenoble 18 (1968) 339–456.

    MathSciNet  MATH  Google Scholar 

  94. W. J. Paul, E. J. Prauss and R. Reischuck, “On Alternation”, Acta Inform. 14 (1980) 243–255.

    MathSciNet  MATH  Google Scholar 

  95. G. Páun and A. Salomaa, “Decision problems concerning the thinness of DOL languages”, EATCS Bulletin 46 (1992) 171–181.

    MATH  Google Scholar 

  96. G. Páun and A. Salomaa, “Closure properties of slender languages”, Theoretical Computer Science 120 (1993) 293–301.

    MathSciNet  MATH  Google Scholar 

  97. G. Patin and A. Salomaa, “Thin and slender languages”, Discrete Applied Mathematics 61 (1995) 257–270.

    MathSciNet  MATH  Google Scholar 

  98. D. Perrin, (Chapter 1) Finite Automata, Handbook of Theoretical Computer Science, Vol. B, J. van Leeuwen (ed.), MIT Press, (1990).

    Google Scholar 

  99. M. O. Rabin and D. Scott, “Finite automata and their decision problems”, IBM J. Res. 3: 2 (1959) 115–125.

    MathSciNet  MATH  Google Scholar 

  100. G. N. Raney, “Sequential functions”, Journal of the ACM 5 (1958) 177.

    MathSciNet  MATH  Google Scholar 

  101. B. Ravikumar, “Some applications of a technique of Sakoda and Sipser”, SIGACT News, 21:4 (1990) 73–77.

    Google Scholar 

  102. B. Ravikumar and O. H. Ibarra, “Relating the type of ambiguity of finite automata to the succinctness of their representation”, SIAM Journal on Computing vol. 18, no. 6 (1989), 1263–1282.

    MathSciNet  MATH  Google Scholar 

  103. W. L. Ruzzo, “Tree-size bounded alternation”, Journal of Computer and System Sciences 21 (1980) 218–235.

    MathSciNet  MATH  Google Scholar 

  104. A. Salomaa, On the Reducibility of Events Represented in Automata, Annales Academiae Scientiarum Fennicae, Series A, I. Mathematica 353, (1964).

    Google Scholar 

  105. A. Salomaa, Theorems on the Representation of events in Moore-Automata, Turun Yliopiston Julkaisuja Annales Universitatis Turkuensis, Series A, 69, (1964).

    Google Scholar 

  106. A. Salomaa, Theory of Automata, Pergamon Press, Oxford, (1969).

    MATH  Google Scholar 

  107. A. Salomaa, Jewels of Formal Language Theory, Computer Science Press, Rockville, Maryland, (1981).

    MATH  Google Scholar 

  108. A. Salomaa, Computation and Automata, Cambridge University Press, Cambridge, (1985).

    MATH  Google Scholar 

  109. A. Salomaa and M. Soittola, Automata-Theoretic Aspects of Formal Power Series, Springer-Verlag, New York, (1978).

    MATH  Google Scholar 

  110. K. Salomaa and S. Yu, “Loop-Free Alternating Finite Automata”, Technical Report 482, Department of Computer Science, Univ. of Western Ontatio, (1996).

    MATH  Google Scholar 

  111. K. Salomaa, S. Yu, Q. Zhuang, “The state complexities of some basic operations on regular languages”, Theoretical Computer Science 125 (1994) 315–328.

    MathSciNet  MATH  Google Scholar 

  112. M. P. Schützenberger, “Finite Counting Automata”, Information and Control 5 (1962) 91–107.

    MathSciNet  MATH  Google Scholar 

  113. M. P. Schützenberger, “On finite monoids having only trivial subgroups”, Information and Control 8 (1965) 190–194.

    MathSciNet  MATH  Google Scholar 

  114. M.P. Schützenberger, “Sur les relations rationelles”, in Proc. 2nd GI Conference, Automata Theory and Formal languages, H. Braklage (ed.), Lecture Notes in Computer Science 33, Springer-Verlag, Berlin (1975) 209–213.

    Google Scholar 

  115. J. Shallit, “Numeration systems, linear recurrences, and regular sets”, Information and Computation 113 (1994) 331–347.

    MathSciNet  MATH  Google Scholar 

  116. J. Shallit and J. Stolfi, “Two methods for generating fractals”, Computers & Graphics 13 (1989) 185–191.

    Google Scholar 

  117. P. W. Shor, “A Counterexample to the triangle conjecture”, J. Combinatorial Theory, Series A (1985) 110–112.

    MathSciNet  MATH  Google Scholar 

  118. J. L. A. van de Snepscheut, What Computing Is All About, Springer-Verlag, New York, (1993).

    MATH  Google Scholar 

  119. L. Stockmeyer and A. Meyer, “Word problems requiring exponential time (preliminary report)”, Proceedings of the 5th ACM Symposium on Theory of Computing, (1973) 1–9.

    MATH  Google Scholar 

  120. A. Szilard, S. Yu, K. Zhang, and J. Shallit, “Characterizing Regular Languages with Polynomial Densities”, Proceedings of the 17th International Symposium on Mathematical Foundations of Computer Science, Lecture Notes in Computer Science 629 Springer-Verlag, Berlin (1992) 494–503.

    Google Scholar 

  121. K. Thompson, “Regular Expression Search Algorithm”, Communications of the ACM 11:6 (1968) 410–422.

    MATH  Google Scholar 

  122. B. W. Watson, Taxonomies and Toolkits of Regular Language Algorithms, PhD Dissertation, Department of Mathematics and Computing Science, Eindhoven University of Technology, (1995).

    MATH  Google Scholar 

  123. D. Wood, Theory of Computation, Wiley, New York, (1987).

    MATH  Google Scholar 

  124. S. Yu and Q. Zhuang, “On the State Complexity of Intersection of Regular Languages”, ACM SIGACT News, vol. 22, no. 3, (1991) 52–54.

    Google Scholar 

  125. Y. Zalcstein, “Locally testable languages”, Journal of Computer and System Sciences 6 (1972) 151–167.

    MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yu, S. (1997). Regular Languages. In: Rozenberg, G., Salomaa, A. (eds) Handbook of Formal Languages. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59136-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59136-5_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63863-3

  • Online ISBN: 978-3-642-59136-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics