iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-642-45030-3_53
New Inapproximability Bounds for TSP | SpringerLink
Skip to main content

New Inapproximability Bounds for TSP

  • Conference paper
Algorithms and Computation (ISAAC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8283))

Included in the following conference series:

Abstract

In this paper, we study the approximability of the metric Traveling Salesman Problem (TSP) and prove new explicit inapproximability bounds for that problem. The best up to now known hardness of approximation bounds were 185/184 for the symmetric case (due to Lampis) and 117/116 for the asymmetric case (due to Papadimitriou and Vempala). We construct here two new bounded occurrence CSP reductions which improve these bounds to 123/122 and 75/74, respectively. The latter bound is the first improvement in more than a decade for the case of the asymmetric TSP. One of our main tools, which may be of independent interest, is a new construction of a bounded degree wheel amplifier used in the proof of our results.

The full version of the paper is to be found under: http://arxiv.org/abs/1303.6437

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof Verification and the Hardness of Approximation Problems. J. ACM 45, 501–555 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Asadpour, A., Goemans, M., Madry, A., Oveis Gharan, S., Saberi, A.: An O(logn/ loglogn)-Approximation Algorithm for the Asymmetric Traveling Salesman Problem. In: Proc. 21st SODA 2010, pp. 379–389 (2010)

    Google Scholar 

  3. Berman, P., Karpinski, M.: On Some Tighter Inapproximability Results. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 200–209. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  4. Berman, P., Karpinski, M.: Efficient Amplifiers and Bounded Degree Optimization, ECCC TR01-053 (2001)

    Google Scholar 

  5. Berman, P., Karpinski, M.: Improved Approximation Lower Bounds on Small Occurrence Optimization, ECCC TR03-008 (2003)

    Google Scholar 

  6. Berman, P., Karpinski, M.: 8/7-approximation algorithm for (1, 2)-TSP. In: Proc. 17th SODA 2006, pp. 641–648 (2006)

    Google Scholar 

  7. Bläser, M.: A 3/4-Approximation Algorithm for Maximum ATSP with Weights Zero and One. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) RANDOM 2004 and APPROX 2004. LNCS, vol. 3122, pp. 61–71. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Böckenhauer, H.-J., Seibert, S.: Improved Lower Bounds on the Approximability of the Traveling Salesman Problem. Theor. Inform. Appl. 34, 213–255 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Christofides, N.: Worst-Case Analysis of a New Heuristic for the Traveling Salesman Problem, Technical Report CS-93-13, Carnegie Mellon University, Pittsburgh (1976)

    Google Scholar 

  10. Engebretsen, L.: An Explicit Lower Bound for TSP with Distances One and Two. Algorithmica 35, 301–318 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Engebretsen, L., Karpinski, M.: TSP with Bounded Metrics. J. Comput. Syst. Sci. 72, 509–546 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Håstad, J.: Some Optimal Inapproximability Results. J. ACM 48, 798–859 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Karpinski, M., Schmied, R.: On Approximation Lower Bounds for TSP with Bounded Metrics, CoRR arXiv: abs/1201.5821 (2012)

    Google Scholar 

  14. Karpinski, M., Schmied, R.: On Improved Inapproximability Results for the Shortest Superstring and Related Problems. In: Proc. 19th CATS 2013. CRPIT, vol. 141, pp. 27–36 (2013)

    Google Scholar 

  15. Lampis, M.: Improved Inapproximability for TSP. In: Gupta, A., Jansen, K., Rolim, J., Servedio, R. (eds.) APPROX 2012 and RANDOM 2012. LNCS, vol. 7408, pp. 243–253. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  16. Mömke, T., Svensson, O.: Approximating Graphic TSP by Matchings. In: Proc. IEEE 52nd FOCS 2011, pp. 560–569 (2011)

    Google Scholar 

  17. Mucha, M.: 13/9-Approximation for Graphic TSP. In: Proc. STACS 2012, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik. LIPIcs, vol. 14, pp. 30–41 (2012)

    Google Scholar 

  18. Oveis Gharan, S., Saberi, A., Singh, M.: A Randomized Rounding Approach to the Traveling Salesman Problem. In: Proc. IEEE 52nd FOCS 2011, pp. 550–559 (2011)

    Google Scholar 

  19. Papadimitriou, C., Vempala, S.: On the Approximability of the Traveling Salesman Problem. In: Proc. 32nd ACM STOC 2000, pp. 126–133 (2000); see also a corrected version in Combinatorica 26, 101–120 (2006)

    Google Scholar 

  20. Papadimitriou, C., Yannakakis, M.: The Traveling Salesman Problem with Distances One and Two. Math. Oper. Res. 18, 1–11 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sebö, A., Vygen, J.: Shorter Tours by Nicer Ears, CoRR arXiv: abs/1201.1870 (2012); to appear in Combinatorica

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Karpinski, M., Lampis, M., Schmied, R. (2013). New Inapproximability Bounds for TSP. In: Cai, L., Cheng, SW., Lam, TW. (eds) Algorithms and Computation. ISAAC 2013. Lecture Notes in Computer Science, vol 8283. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45030-3_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45030-3_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45029-7

  • Online ISBN: 978-3-642-45030-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics