iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-642-45008-2_2
A New Version of the Multiobjective Artificial Bee Colony Algorithm for Optimizing the Location Areas Planning in a Realistic Network | SpringerLink
Skip to main content

A New Version of the Multiobjective Artificial Bee Colony Algorithm for Optimizing the Location Areas Planning in a Realistic Network

  • Conference paper
Theory and Practice of Natural Computing (TPNC 2013)

Abstract

In this paper, we present our version of the MultiObjective Artificial Bee Colony algorithm (a metaheuristic based on the foraging behavior of honey bees) to optimize the Location Areas Planning Problem. This bi-objective problem models one of the most important tasks in any Public Land Mobile Network: the mobile location management. In previous works of other authors, this management problem was simplified by using the linear aggregation of the objective functions. However, this technique has several drawbacks. That is the reason why we propose the use of multiobjective optimization. Furthermore, with the aim of studying a realistic mobile environment, we apply our algorithm to the mobile network developed by the Stanford University (a mobile network located in the San Francisco Bay, USA). Experimental results show that our proposal outperforms other algorithms published in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, D., Zeng, Q.: Introduction to Wireless and Mobile Systems. Cengage Learning (2010)

    Google Scholar 

  2. Almeida-Luz, S.M., Vega-Rodríguez, M.A., Gómez-Pulido, J.A., Sánchez-Pérez, J.M.: Applying Differential Evolution to a realistic location area problem using SUMATRA. In: Proceedings of The Second International Conference on Advanced Engineering Computing and Applications in Sciences, pp. 170–175 (2008)

    Google Scholar 

  3. Almeida-Luz, S.M., Vega-Rodríguez, M.A., Gómez-Pulido, J.A., Sánchez-Pérez, J.M.: Solving a realistic location area problem using SUMATRA networks with the Scatter Search algorithm. In: Proceedings of the Ninth International Conference on Intelligent Systems Design and Applications, pp. 689–694 (2009)

    Google Scholar 

  4. Berrocal-Plaza, V., Vega-Rodríguez, M.A., Sánchez-Pérez, J.M., Gómez-Pulido, J.A.: Applying the Strength Pareto Evolutionary Algorithm to solve the location areas planning problem in realistic networks. In: 14th International Conference on Computer Aided Systems Theory, pp. 176–178 (2013)

    Google Scholar 

  5. Berrocal-Plaza, V., Vega-Rodríguez, M.A., Sánchez-Pérez, J.M., Gómez-Pulido, J.A.: Solving the location areas scheme in realistic networks by using a multi-objective algorithm. In: Esparcia-Alcázar, A.I. (ed.) EvoApplications 2013. LNCS, vol. 7835, pp. 72–81. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  6. Coello, C.A.C., Lamont, G.B., Veldhuizen, D.A.V.: Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation). Springer-Verlag New York, Inc., Secaucus (2006)

    Google Scholar 

  7. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  8. Demestichas, P., Georgantas, N., Tzifa, E., Demesticha, V., Striki, M., Kilanioti, M., Theologou, M.E.: Computationally efficient algorithms for location area planning in future cellular systems. Computer Communications 23(13), 1263–1280 (2000)

    Article  Google Scholar 

  9. Garg, V.: Wireless Communications & Networking, 1st edn. Morgan Kaufmann Publishers Inc., San Francisco (2007)

    Google Scholar 

  10. Gondim, P.R.L.: Genetic algorithms and the location area partitioning problem in cellular networks. In: Procedings of the IEEE 46th Vehicular Technology Conference on Mobile Technology for the Human Race, vol. 3, pp. 1835–1838 (1996)

    Google Scholar 

  11. Jannink, J., Cui, Y.: Stanford university mobile activity traces (sumatra), http://infolab.stanford.edu/sumatra (accessed in 2013)

  12. Karaboga, D., Basturk, B.: Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. In: Melin, P., Castillo, O., Aguilar, L.T., Kacprzyk, J., Pedrycz, W. (eds.) IFSA 2007. LNCS (LNAI), vol. 4529, pp. 789–798. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Kyamakya, K., Jobmann, K.: Location management in cellular networks: classification of the most important paradigms, realistic simulation framework, and relative performance analysis. IEEE Transactions on Vehicular Technology 54(2), 687–708 (2005)

    Article  Google Scholar 

  14. Rubio-Largo, A., Vega-Rodríguez, M.A., Gómez-Pulido, J.A., Sánchez-Pérez, J.M.: A multiobjective approach based on artificial bee colony for the static routing and wavelength assignment problem. Soft Comput. 17(2), 199–211 (2013)

    Article  Google Scholar 

  15. Subrata, R., Zomaya, A.Y.: Dynamic location management for mobile computing. Telecommunication Systems 22(1-4), 169–187 (2003)

    Article  Google Scholar 

  16. Wong, V.W.S., Leung, V.C.: Location management for next-generation personal communications networks. Netwrk. Mag. of Global Internetwkg. 14(5), 18–24 (2000)

    Article  Google Scholar 

  17. Zhou, A., Qu, B.Y., Li, H., Zhao, S.Z., Suganthan, P.N., Zhang, Q.: Multiobjective evolutionary algorithms: A survey of the state of the art. Swarm and Evolutionary Computation 1(1), 32–49 (2011)

    Article  Google Scholar 

  18. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C., da Fonseca, V.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Transactions on Evolutionary Computation 7(2), 117–132 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berrocal-Plaza, V., Vega-Rodríguez, M.A., Sánchez-Pérez, J.M. (2013). A New Version of the Multiobjective Artificial Bee Colony Algorithm for Optimizing the Location Areas Planning in a Realistic Network. In: Dediu, AH., Martín-Vide, C., Truthe, B., Vega-Rodríguez, M.A. (eds) Theory and Practice of Natural Computing. TPNC 2013. Lecture Notes in Computer Science, vol 8273. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45008-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45008-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45007-5

  • Online ISBN: 978-3-642-45008-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics