iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-642-44973-4_49
A Novel Feature Selection Method for Classification Using a Fuzzy Criterion | SpringerLink
Skip to main content

A Novel Feature Selection Method for Classification Using a Fuzzy Criterion

  • Conference paper
  • First Online:
Learning and Intelligent Optimization (LION 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7997))

Included in the following conference series:

Abstract

Although many classification methods take advantage of fuzzy sets theory, the same cannot be said for feature reduction methods. In this paper we explore ideas related to the use of fuzzy sets and we propose a novel fuzzy feature selection method tailored for the Regularized Generalized Eigenvalue Classifier (ReGEC). The method provides small and robust subsets of features that can be used for supervised classification. We show, using real world datasets that the performance of ReGEC classifier on the selected features well compares with that obtained using them all.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    MATH  Google Scholar 

  2. Battiti, R.: Using mutual information for selecting features in supervised neural net learning. IEEE Trans. Neural Netw. 5, 537–550 (1994)

    Article  Google Scholar 

  3. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1226–1238 (2005)

    Article  Google Scholar 

  4. Ooi, C.H., Chetty, M., Teng, S.W.: Differential prioritization in feature selection and classifier aggregation for multi class microarray datasets. Data Min. Knowl. Discov. 114, 329–366 (2007)

    Article  MathSciNet  Google Scholar 

  5. Li, Y., Wu, Z.F.: Fuzzy feature selection based on min-max learning rule and extension matrix. Pattern Recogn. 41, 217–226 (2008)

    Article  MATH  Google Scholar 

  6. Mao, K.Z.: Orthogonal forward selection and backward elimination algorithms for feature subset selection. IEEE Trans. Syst. Man Cybern. B 34, 629–634 (2004)

    Article  Google Scholar 

  7. Fu, X., Wang, L.: Data dimensionality reduction with application to simplifying RBF network structure and improving classification performance. IEEE Trans. Syst. Man Cybern. B. 33, 399–409 (2003)

    Article  Google Scholar 

  8. Kononenko, I.: Estimating attributes: analysis and extensions of relief. In: Bergadano, F., De Raedt, L. (eds.) ECML 1994. LNCS, vol. 784, pp. 171–182. Springer, Heidelberg (1994)

    Google Scholar 

  9. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, New York (2001)

    MATH  Google Scholar 

  10. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Mach. Learn. 46, 389–422 (2002)

    Article  MATH  Google Scholar 

  11. Weston, J., Elisseff, A., Schoelkopf, B., Tipping, M.: Use of the zero-norm with linear models and kernel methods. J. Mach. Learn. Res. 3, 1439–1461 (2003)

    MathSciNet  MATH  Google Scholar 

  12. Ramze Rezaee, M., Goedhart, B., Lelieveldt, B.P.F., Reiber, J.H.C.: Fuzzy feature selection. Pattern Recogn. 32, 2011–2019 (1999)

    Article  Google Scholar 

  13. Pedrycz, W., Vukovich, G.: Feature analysis through information granulation and fuzzy sets. Pattern Recogn. 35, 825–834 (2002)

    Article  MATH  Google Scholar 

  14. Hedjazi, L., Kempowsky-Hamon, T., Despénes, L., Le Lann, M.V., Elgue, S., Aguilar-Martin, J.: Sensor placement and fault detection using an efficient fuzzy feature selection approach. In: 49th IEEE Conference on Decision and Control, 15–17 December 2010, Hilton Atlanta Hotel, Atlanta, GA, USA

    Google Scholar 

  15. Chen, Y.C., Pal, N.R., Chung, I.F.: An integrated mechanism for feature selection and fuzzy rule extraction for classification. IEEE Trans. Fuzzy Syst. 20, 683–698 (2012)

    Article  Google Scholar 

  16. Vieira, S.M., Sousa, J.M.C., Kaymak, U.: Fuzzy criteria for feature selection. Fuzzy Sets and Syst. 189, 1–18 (2012)

    Article  MathSciNet  Google Scholar 

  17. Moustakidis, S.P., Theocharis, J.B.: SVM-FuzCoC: a novel SVM-based feature selection method using a fuzzy complementary criterion. Pattern Recogn. 43, 3712–3729 (2010)

    Article  MATH  Google Scholar 

  18. Guarracino, M.R., Cuciniello, S., Pardalos, P.: Classification and characterization of gene expression data with generalized eigenvalues. J. Optim. Theory Appl. 141, 533–545 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Guarracino, M.R., Cifarelli, C., Seref, O., Pardalos, P.: A classification algorithm based on generalized eigenvalue problems. Optim. Methods Softw. 22, 73–81 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Guarracino, M.R., Irpino, A., Verde, R.: Multiclass generalized eigenvalue proximal support vector machines. In: 4th IEEE Conference on Complex, Intelligent and Software Intensive Systems, pp. 25–32 (2010)

    Google Scholar 

  21. Gorman, P., Sejnowski, T.: Analysis of hidden units in a layered network trained to classify sonar targets. Neural Netw. 11, 75–89 (1988)

    Article  Google Scholar 

Download references

Acknowledgment

This work has been partially funded by Italian Flagship project Interomics and Kauno Technologijos Universitetas (KTU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Rosario Guarracino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ferraro, M.B., Irpino, A., Verde, R., Guarracino, M.R. (2013). A Novel Feature Selection Method for Classification Using a Fuzzy Criterion. In: Nicosia, G., Pardalos, P. (eds) Learning and Intelligent Optimization. LION 2013. Lecture Notes in Computer Science(), vol 7997. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-44973-4_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-44973-4_49

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-44972-7

  • Online ISBN: 978-3-642-44973-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics