iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-642-42057-3_17
Improve Scene Classification by Using Feature and Kernel Combination | SpringerLink
Skip to main content

Improve Scene Classification by Using Feature and Kernel Combination

  • Conference paper
Intelligence Science and Big Data Engineering (IScIDE 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8261))

  • 2452 Accesses

Abstract

Scene classification is an important issue in the computer vision field. In this paper, we propose an improved approach for scene classification. Compared with the previous work, the proposed approach has two processes to improve the performance of scene classification. First, feature combination is conducted to extract more effective information to describe characteristics of each category decreasing the influence of scale, rotation and illumination. Second, to extract more discriminative information for building a multi-category classifier, a kernel fusion method is proposed. Experimental results show that the use of the feature and kernel combination method can improve the classification accuracy effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Torralba, A.: Contextual priming for object detection. International Journal of Computer Vision 53(2), 169–191 (2003)

    Article  Google Scholar 

  2. Vogel, J., Schiele, B.: Semantic modeling of natural scenes for content-based image retribal. International Journal of Computer Vision 72(2), 133–157 (2007)

    Article  Google Scholar 

  3. Smeulders, A.W., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(12), 1349–1380 (2000)

    Article  Google Scholar 

  4. Szummer, M., Picard, R.: Indoor-outdoor image classification. In: Proceedings of IEEE International Workshop in Content-based Access of Image and Video Database, pp. 42–51 (1998)

    Google Scholar 

  5. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: Proceedings of IEEE Computer Vision and Pattern Recognition, pp. 2169–2178 (2006)

    Google Scholar 

  6. Zhao, C., Liu, C., Lai, Z.: Multi-scale gist feature manifold for building recognition. Neurocomputing 74(17), 2929–2940 (2011)

    Article  Google Scholar 

  7. Li, Z., Dewen, H., Zongtan, Z., Zhaowen, Z.: Natural Scene recognition using weighted histograms of gradient orientation descriptor. Front. Electr. Electron. Eng. China 6(2), 318–327 (2011)

    Article  Google Scholar 

  8. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)

    Article  Google Scholar 

  9. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  10. Gehler, P., Nowozin, S.: On feature combination for multiclass object classification. In: Proceedings of IEEE 12th International Conference on Computer Vision, pp. 221–228 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yuan, L., Chen, F., Zhou, L., Hu, D. (2013). Improve Scene Classification by Using Feature and Kernel Combination. In: Sun, C., Fang, F., Zhou, ZH., Yang, W., Liu, ZY. (eds) Intelligence Science and Big Data Engineering. IScIDE 2013. Lecture Notes in Computer Science, vol 8261. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-42057-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-42057-3_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-42056-6

  • Online ISBN: 978-3-642-42057-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics