Abstract
A major step in ICT-driven policy making is information gathering. During this phase, analysts and experts have to deal with a high number of statistical data which they use as a basis to identify problems and find appropriate solutions. This paper introduces a statistical data model to support these analysts and experts. It allows for handling the complexity (i.e. the dimensions) of the data for the visualizations. In particular, it helps to use the same data for two-dimensional, but also multi-dimensional statistics visualizations. Based on this statistic data model we introduce an interactive approach of visual statistics cockpits. This results in highly interactive statistics visualization cockpits that enable both analysts and experts to improve problem assessment and solution finding.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hao, M., Dayal, U., Keim, D., Schreck, T.: A Visual Analysis of Multi-Attribute Data Using Pixel Matrix Displays. In: Proc. VDA 2007 (2007)
Yuan, X., Guo, P., Xiao, H., Zhou, H., Qu, H.: Scattering Points in Parallel Coordinates. IEEE Transactions on Visualization and Computer Graphics 15(6), 1001–1008 (2009)
Heinrich, J., Weiskopf, D.: Continuous Parallel Coordinates. IEEE Transactions on Visualization and Computer Graphics 15(6), 1531–1538 (2009)
Ward, M.O., Grinstein, G., Keim, D.: Interactive Data Visualizations: Foundations, Techniques, and Applications. Taylor & Francis Ltd. (2010)
Viau, C., McGuffin, M.J., Chiricota, Y., Jurisica, I.: The FlowVizMenu and Parallel Scatterplot Matrix: Hybrid Multidimensional Visualizations for Network Exploration. IEEE Transactions on Visualization and Computer Graphics 16(6), 1100–1108 (2010)
Sharko, J., Grinstein, G., Marx, K.A.: Vectorized Radviz and Its Application to Multiple Cluster Datasets. IEEE Transactions on Visualization and Computer Graphics 14(6), 1077–1427 (2008)
Draper, G., Livnat, Y., Riesenfeld, R.F.: A Survey of Radial Methods for Information Visualization. IEEE Transactions on Visualization and Computer Graphics 15(5), 759–776 (2009)
Wilkinson, L., Friendly, M.: The History of the Cluster Heat Map. The American Statistician 63(2), 179–184 (2009)
Rao, R., Card, S.: The table lens: merging graphical and symbolic representations in an interactive focus + context visualization for tabular information. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems: Celebrating Interdependence, CHI 1994, pp. 318–322 (1994)
Keim, D.A., Kriegel, H.-P., Ankerst, M.: Recursive pattern: a technique for visualizing very large amounts of data. In: Proceedings of the 6th Conference on Visualization 1995, pp. 279–286 (1995)
Havre, S., Hetzler, E., Whitney, P., Nowell, L.: ThemeRiver: visualizing thematic changes in large document collections. IEEE Transactions on Visualization and Computer Graphics 8(1), 9–20 (2002)
Shneiderman, B.: The eyes have it: a task by data type taxonomy for information visualizations. In: Proceedings IEEE Symposium on Visual Languages, pp. 336–343 (1996)
Jern, M.: Collaborative web-enabled geoanalytics applied to OECD regional data. In: Luo, Y. (ed.) CDVE 2009. LNCS, vol. 5738, pp. 32–43. Springer, Heidelberg (2009)
Cyganiak, R., Field, S., Gregory, A., Halb, W., Tennison, J.: Semantic Statistics: Bringing Together SDMX and SCOVO. In: Proceedings of LDOW, Raleigh, North Carolina, USA (2010)
Few, S.: Information Dashboard Design. Overview article about Dashboards (2012), http://blogs.ischool.berkeley.edu/i247s12/files/2012/01/Dashboard-Design-Overview-Presentation.pdf
Duval, E.: Attention please! learning analytics for visualization and recommendation. In: Proceedings of the 1st International Conference on Learning Analytics and Knowledge, LAK 2011, pp. 9–17. ACM, New York (2011)
Kohlhammer, J., Nazemi, K., Ruppert, T., Burkhardt, D.: Toward Visualization in Policy Modeling. IEEE Computer Graphics and Applications 32(5), 84–89 (2012)
Burkhardt, D., Nazemi, K., Sonntagbauer, P., Sonntagbauer, S., Kohlhammer, J.: Interactive Visualizations in the Process of Policy Modeling. In: Proceedings of IFIP eGov 2013. GI-LNI (2013)
Jern, M.: (OECD), What does OECD eXplorer enable you to do? An introduction to its main features. In: Handbook of the OECD eXplorer (2009), http://www.oecd.org/gov/43142629.pdf
Burkhardt, D., Ruppert, T., Nazemi, K.: Towards process-oriented Information Visualization for supporting users. In: Proceedings of 15th International Conference on Interactive Collaborative Learning, ICL 2012, pp. 1–8 (2012)
Burkhardt, D., Nazemi, K.: Dynamic process support based on users’ behavior. In: Proceedings of 15th International Conference on Interactive Collaborative Learning, ICL 2012, pp. 1–6 (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Burkhardt, D., Nazemi, K., Stab, C., Steiger, M., Kuijper, A., Kohlhammer, J. (2013). Visual Statistics Cockpits for Information Gathering in the Policy-Making Process. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2013. Lecture Notes in Computer Science, vol 8034. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41939-3_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-41939-3_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41938-6
Online ISBN: 978-3-642-41939-3
eBook Packages: Computer ScienceComputer Science (R0)