iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-642-41550-0_11
A Lazy Learning Approach for Self-training | SpringerLink
Skip to main content

A Lazy Learning Approach for Self-training

  • Conference paper
Modeling Decisions for Artificial Intelligence (MDAI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8234))

  • 875 Accesses

Abstract

Self-Training methods are a family of methods that use some supervised method to assign class labels to the unlabeled examples. The resulting model is useful to predict the classification of unseen new domain objects. Most common supervised methods used inside self-training are the inductive ones. In this paper we propose to use the lazy learning method LID to assign classes to the unlabeled examples. A lazy approach such as the one of LID allows to reason by similarity around the labeled examples. Thus, when an unlabeled example is classified as belonging to a class we are sure that it shares relevant features with some labeled examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Armengol, E.: Building partial domain theories from explanations. Knowledge Intelligence 2/08, 19–24 (2008)

    Google Scholar 

  2. Armengol, E., Plaza, E.: Lazy induction of descriptions for relational case-based learning. In: De Raedt, L., Flach, P. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, pp. 13–24. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  3. Bache, K., Lichman, M.: UCI machine learning repository (2013)

    Google Scholar 

  4. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In: Proceedings of the Eleventh Annual Conference on Computational Learning Theory, COLT 1998, pp. 92–100. ACM, New York (1998)

    Chapter  Google Scholar 

  5. Clancey, W.J.: Heuristic classification. Artificial Intelligence 27(3), 289–350 (1985)

    Article  Google Scholar 

  6. López de Mántaras, R.: A distance-based attribute selection measure for decision tree induction. Machine Learning 6, 81–92 (1991)

    Article  Google Scholar 

  7. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  8. Huang, J., Sayyad-Shirabad, J., Matwin, S., Su, J.: Improving co-training with agreement-based sampling. In: Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu, Q. (eds.) RSCTC 2010. LNCS, vol. 6086, pp. 197–206. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Iggane, M., Ennaji, A., Mammass, D., El Yassa, M.: Self-training using a k-nearest neighbor as a base classifier reinforced by support vector machines. International Journal of Computer Applications 56(6), 43–46 (2012)

    Article  Google Scholar 

  10. Nigam, K., McCallum, A.K., Thrun, S., Mitchell, T.M.: Text classification from labeled and unlabeled documents using EM. Machine Learning 39(2/3), 103–134 (2000)

    Article  MATH  Google Scholar 

  11. Quinlan, J.R.: Induction of decision trees. Machine Learning 1(1), 81–106 (1986)

    Google Scholar 

  12. Zhu, X.: Semi-supervised learning literature survey. Technical report, Computer Science, University Wisconsin-Madison, Madison, WI, Tech. Rep. 1530 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Armengol, E. (2013). A Lazy Learning Approach for Self-training. In: Torra, V., Narukawa, Y., Navarro-Arribas, G., Megías, D. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2013. Lecture Notes in Computer Science(), vol 8234. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41550-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41550-0_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41549-4

  • Online ISBN: 978-3-642-41550-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics