iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-642-41062-8_8
Faster Algorithms for Tree Similarity Based on Compressed Enumeration of Bounded-Sized Ordered Subtrees | SpringerLink
Skip to main content

Faster Algorithms for Tree Similarity Based on Compressed Enumeration of Bounded-Sized Ordered Subtrees

  • Conference paper
Similarity Search and Applications (SISAP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8199))

Included in the following conference series:

  • 1693 Accesses

Abstract

In this paper, we study efficient computation of tree similarity for ordered trees based on compressed subtree enumeration. The compressed subtree enumeration is a new paradigm of enumeration algorithms that enumerates all subtrees of an input tree T in the form of their compressed bit signatures. For the task of enumerating all compressed bit signatures of k-subtrees in an ordered tree T, we first present an enumeration algorithm in O(k)-delay, and then, present another enumeration algorithm in constant-delay using O(n) time preprocessing that directly outputs bit signatures. These algorithms are designed based on bit-parallel speed-up technique for signature maintenance. By experiments on real and artificial datasets, both algorithms showed approximately 22% to 36% speed-up over the algorithms without bit-parallel signature maintenance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zaki, M.J.: Efficiently mining frequent trees in a forest. In: Proc. KDD 2002, pp. 71–80 (2002)

    Google Scholar 

  2. Asai, T., Abe, K., Kawasoe, S., Arimura, H., Sakamoto, H., Arikawa, S.: Efficient substructure discovery from large semi-structured data. In: Proc. SDM 2002 (2002)

    Google Scholar 

  3. Chim, H., Deng, X.: A new suffix tree similarity measure for document clustering. In: Proc. WWW 2007, pp. 121–130 (2007)

    Google Scholar 

  4. Collins, M., Duffy, N.: Convolution kernels for natural language. In: Proc. of Advances in Neural Information Processing Systems, NIPS, pp. 625–632 (2001)

    Google Scholar 

  5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. The MIT Press (2001)

    Google Scholar 

  6. Goldberg, L.A.: Polynomial space polynomial delay algorithms for listing families of graphs. In: Proc. ACM STOC 1993, pp. 218–225. ACM (1993)

    Google Scholar 

  7. Jansson, J., Sadakane, K., Sung, W.-K.: CRAM: Compressed random access memory. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 510–521. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Kashima, H., Koyanagi, T.: Kernels for semi-structured data. In: Proc. 19th ICML 2002, pp. 291–298. Morgan Kaufmann Publishers Inc. (2002)

    Google Scholar 

  9. Kimura, D., Kuboyama, T., Shibuya, T., Kashima, H.: A subpath kernel for rooted unordered trees. In: Huang, J.Z., Cao, L., Srivastava, J. (eds.) PAKDD 2011, Part I. LNCS, vol. 6634, pp. 62–74. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Kuboyama, T., Hirata, K., Aoki-Kinoshita, K.F.: An efficient unordered tree kernel and its application to glycan classification. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS(LNAI), vol. 5012, pp. 184–195. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Kuboyama, T., Hirata, K., Kashima, H., Aoki-Kinoshita, K.F., Yasuda, H.: A spectrum tree kernel. Information and Media Technologies 22(2), 292–299 (2007)

    Google Scholar 

  12. Kudo, T., Maeda, E., Matsumoto, Y.: An application of boosting to graph classification. In: Proc. NIPS 2004 (2004)

    Google Scholar 

  13. Lakkaraju, P., Gauch, S., Speretta, M.: Document similarity based on concept tree distance. In: Proc. 19th ACM HT 2008, pp. 127–132 (2008)

    Google Scholar 

  14. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to information retrieval. Cambridge University Press (2008)

    Google Scholar 

  15. Nakano, S.: Efficient generation of plane trees. IPL 84(3), 167–172 (2002)

    Google Scholar 

  16. Tsuda, K., Kudo, T.: Clustering graphs by weighted substructure mining. In: Proc. 23rd ICML, pp. 953–960. ACM (2006)

    Google Scholar 

  17. Wasa, K., Kaneta, Y., Uno, T., Arimura, H.: Constant time enumeration of bounded-size subtrees in trees and its application. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.) COCOON 2012. LNCS, vol. 7434, pp. 347–359. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  18. Xin, D., Han, J., Yan, X., Cheng, H.: Mining compressed frequent-pattern sets. In: Proc. VLDB 2005, pp. 709–720 (2005)

    Google Scholar 

  19. Zaki, M.J.: Efficiently mining frequent trees in a forest. In: Proc. KDD 2002, pp. 71–80 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wasa, K., Hirata, K., Uno, T., Arimura, H. (2013). Faster Algorithms for Tree Similarity Based on Compressed Enumeration of Bounded-Sized Ordered Subtrees. In: Brisaboa, N., Pedreira, O., Zezula, P. (eds) Similarity Search and Applications. SISAP 2013. Lecture Notes in Computer Science, vol 8199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41062-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41062-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41061-1

  • Online ISBN: 978-3-642-41062-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics