Abstract
Parametric reasoning is particularly relevant for timed models, but very often leads to undecidability of reachability problems. We propose a parametrised version of Interrupt Timed Automata (an expressive model incomparable to Timed Automata), where polynomials of parameters can occur in guards and updates. We prove that different reachability problems, including robust reachability, are decidable for this model, and we give complexity upper bounds for a fixed or variable number of clocks and parameters.
This work has been supported by project ImpRo ANR-2010-BLAN-0317.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: ACM Symp. on Theory of Computing, pp. 592–601. ACM (1993)
Alur, R., Dill, D.L.: Automata for modeling real-time systems. In: Paterson, M. (ed.) ICALP 1990. LNCS, vol. 443, pp. 322–335. Springer, Heidelberg (1990)
Bérard, B., Fribourg, L.: Automated verification of a parametric real-time program: The ABR conformance protocol. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 96–107. Springer, Heidelberg (1999)
Miller, J.S.: Decidability and complexity results for timed automata and semi-linear hybrid automata. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 296–309. Springer, Heidelberg (2000)
Doyen, L.: Robust Parametric Reachability for Timed Automata. Information Processing Letters 102(5), 208–213 (2007)
André, É., Chatain, T., Encrenaz, E., Fribourg, L.: An inverse method for parametric timed automata. Int. J. of Foundations of Comp. Sci. 20(5), 819–836 (2009)
André, É., Fribourg, L., Kühne, U., Soulat, R.: IMITATOR 2.5: A tool for analyzing robustness in scheduling problems. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 33–36. Springer, Heidelberg (2012)
Jovanović, A., Lime, D., Roux, O.H.: Integer parameter synthesis for timed automata. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 401–415. Springer, Heidelberg (2013)
Alur, R., Henzinger, T.A., Ho, P.H.: Automatic Symbolic Verification of Embedded Systems. IEEE Transactions on Software Engineering 22, 181–201 (1996)
Henzinger, T.A., Ho, P.H., Wong-Toi, H.: HyTech: A Model-Checker for Hybrid Systems. Software Tools for Technology Transfer 1, 110–122 (1997)
Bozzelli, L., Torre, S.L.: Decision problems for lower/upper bound parametric timed automata. Formal Methods in System Design 35(2), 121–151 (2009)
Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.: Linear parametric model checking of timed automata. J. of Logic and Alg. Prog. 52-53, 183–220 (2002)
Jovanović, A., Faucou, S., Lime, D., Roux, O.H.: Real-time control with parametric timed reachability games. In: WODES 2012, IFAC, pp. 323–330 (2012)
Bérard, B., Haddad, S.: Interrupt Timed Automata. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 197–211. Springer, Heidelberg (2009)
Bérard, B., Haddad, S., Sassolas, M.: Interrupt timed automata: Verification and expressiveness. Formal Methods in System Design 40(1), 41–87 (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bérard, B., Haddad, S., Jovanović, A., Lime, D. (2013). Parametric Interrupt Timed Automata. In: Abdulla, P.A., Potapov, I. (eds) Reachability Problems. RP 2013. Lecture Notes in Computer Science, vol 8169. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41036-9_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-41036-9_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41035-2
Online ISBN: 978-3-642-41036-9
eBook Packages: Computer ScienceComputer Science (R0)