iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-642-40897-7_4
Avoiding Anomalies in Data Stream Learning | SpringerLink
Skip to main content

Avoiding Anomalies in Data Stream Learning

  • Conference paper
Discovery Science (DS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8140))

Included in the following conference series:

  • 1290 Accesses

Abstract

The presence of anomalies in data compromises data quality and can reduce the effectiveness of learning algorithms. Standard data mining methodologies refer to data cleaning as a pre-processing before the learning task. The problem of data cleaning is exacerbated when learning in the computational model of data streams. In this paper we present a streaming algorithm for learning classification rules able to detect contextual anomalies in the data. Contextual anomalies are surprising attribute values in the context defined by the conditional part of the rule. For each example we compute the degree of anomaliness based on the probability of the attribute-values given the conditional part of the rule covering the example. The examples with high degree of anomaliness are signaled to the user and not used to train the classifier. The experimental evaluation in real-world data sets shows the ability to discover anomalous examples in the data. The main advantage of the proposed method is the ability to inform the context and explain why the anomaly occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barateiro, J., Galhardas, H.: A survey of data quality tools. Datenbank-Spektrum 14, 15–21 (2005)

    Google Scholar 

  2. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM Comput. Surv. 41(3) (2009)

    Google Scholar 

  3. Clark, P., Boswell, R.: Rule induction with cn2: Some recent improvements, pp. 151–163. Springer (1991)

    Google Scholar 

  4. Domingos, P., Hulten, G.: Mining high-speed data streams. In: Ramakrishnan, R., Stolfo, S.J., Bayardo, R.J., Parsa, I. (eds.) KDD, pp. 71–80. ACM (2000)

    Google Scholar 

  5. Frank, A., Asuncion, A.: UCI machine learning repository (2010)

    Google Scholar 

  6. Gama, J., Fernandes, R., Rocha, R.: Decision trees for mining data streams. Intelligent Data Analysis 10, 23–45 (2006)

    Google Scholar 

  7. Gama, J., Rocha, R., Medas, P.: Accurate decision trees for mining high-speed data streams. In: Proceedings of the Ninth International Conference on Knowledge Discovery and Data Mining. ACM Press, New York (2003)

    Google Scholar 

  8. Gama, J., Kosina, P.: Learning decision rules from data streams. In: Walsh, T. (ed.) IJCAI, pp. 1255–1260. IJCAI/AAAI (2011)

    Google Scholar 

  9. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques. Morgan Kaufmann (2012)

    Google Scholar 

  10. Harries, M., Sammut, C., Horn, K.: Extracting hidden context. Machine Learning 32, 101–126 (1998)

    Article  MATH  Google Scholar 

  11. Hodge, V.J., Austin, J.: A survey of outlier detection methodologies. Artificial Intelligence Review 22(2), 85–126 (2004)

    Article  MATH  Google Scholar 

  12. Ikonomovska, E., Gama, J., Dzeroski, S.: Learning model trees from evolving data streams. Data Min. Knowl. Discov. 23(1), 128–168 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Knorr, E.M., Ng, R.T., Tucakov, V.: Distance-based outliers: algorithms and applications. The VLDB Journal 8(3-4), 237–253 (2000)

    Article  Google Scholar 

  14. Kosina, P., Gama, J.: Handling time changing data with adaptive very fast decision rules. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012, Part I. LNCS, vol. 7523, pp. 827–842. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  15. Pham, D.-S., Venkatesh, S., Lazarescu, M., Budhaditya, S.: Anomaly detection in large-scale data stream networks. Data Mining and Knowledge Discovery (to appear)

    Google Scholar 

  16. Ross Quinlan, J.: Kdd-99 panel on last 10 and next 10 years. SIGKDD Explorations 1(2), 62 (2000)

    Article  Google Scholar 

  17. Nick Street, W., Kim, Y.: A streaming ensemble algorithm (sea) for large-scale classification. In: KDD, pp. 377–382 (2001)

    Google Scholar 

  18. Tukey, J.W.: Exploratory Data Analysis. Addison-Wesley (1977)

    Google Scholar 

  19. Zliobaite, I., Gabrys, B.: Adaptive preprocessing for streaming data. IEEE Transactions on Knowledge and Data Engineering 99(PrePrints), 1 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gama, J., Kosina, P., Almeida, E. (2013). Avoiding Anomalies in Data Stream Learning. In: Fürnkranz, J., Hüllermeier, E., Higuchi, T. (eds) Discovery Science. DS 2013. Lecture Notes in Computer Science(), vol 8140. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40897-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40897-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40896-0

  • Online ISBN: 978-3-642-40897-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics