iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-642-40802-1_4
Improving Ranking Evaluation Employing Visual Analytics | SpringerLink
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8138))

Abstract

In order to satisfy diverse user needs and support challenging tasks, it is fundamental to provide automated tools to examine system behavior, both visually and analytically. This paper provides an analytical model for examining rankings produced by IR systems, based on the discounted cumulative gain family of metrics, and visualization for performing failure and “what-if” analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Angelini, M., Ferro, N., Santucci, G., Silvello, G.: Visual Interactive Failure Analysis: Supporting Users in Information Retrieval Evaluation. In: Proc. of the 4th Information Interaction in Context Symposium, IIIX 2012, pp. 194–203. ACM, New York (2012)

    Google Scholar 

  2. Berkhin, P.: A Survey of Clustering Data Mining Techniques. In: Kogan, J., Nicholas, C., Teboulle, M. (eds.) Grouping Multidimensional Data, pp. 25–71. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Geng, X., Liu, T.-Y., Qin, T., Li, H.: Feature Selection for Ranking. In: Kraaij, W., de Vries, A.P., Clarke, C.L.A., Fuhr, N., Kando, N. (eds.) Proc. 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2007), pp. 407–414. ACM Press, New York (2007)

    Chapter  Google Scholar 

  4. Harman, D., Buckley, C.: Overview of the Reliable Information Access Workshop. Information Retrieval 12(6), 615–641 (2009)

    Article  Google Scholar 

  5. Järvelin, K., Kekäläinen, J.: Cumulated Gain-Based Evaluation of IR Techniques. ACM Transactions on Information System (TOIS) 20(4), 422–446 (2002)

    Article  Google Scholar 

  6. Liu, T.-Y.: Learning to Rank for Information Retrieval. Foundations and Trends in Information Retrieval 3(3), 225–331 (2009)

    Article  Google Scholar 

  7. Liu, T.-Y.Y., Xu, J., Qin, T., Xiong, W., Li, H.: LETOR: Benchmark Dataset for Research on Learning to Rank for Information Retrieval. In: Joachims, T., Li, H., Liu, T.-Y., Zhai, C. (eds.) SIGIR 2007 Workshop on Learning to Rank for Information Retrieval (2007)

    Google Scholar 

  8. Teevan, J., Dumais, S.T., Horvitz, E.: Potential for Personalization. ACM Transactions on Computer-Human Interaction (TOCHI) 17(1), 1–31 (2010)

    Article  Google Scholar 

  9. van Rijsbergen, C.J.: Information Retrieval, 2nd edn. Butterworths, London (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Angelini, M., Ferro, N., Santucci, G., Silvello, G. (2013). Improving Ranking Evaluation Employing Visual Analytics. In: Forner, P., Müller, H., Paredes, R., Rosso, P., Stein, B. (eds) Information Access Evaluation. Multilinguality, Multimodality, and Visualization. CLEF 2013. Lecture Notes in Computer Science, vol 8138. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40802-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40802-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40801-4

  • Online ISBN: 978-3-642-40802-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics